2021高考数学(理)人教A版一轮复习学案 作业:第九章 9-5 椭 圆 第2课时 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021高考数学理人教A版一轮复习学案 作业:第九章 9-5 椭圆 第2课时 WORD版含解析 2021 高考 数学 人教 一轮 复习 作业 第九 课时 WORD 解析
- 资源描述:
-
1、第2课时直线与椭圆 直线与椭圆的位置关系1.若直线ykx1与椭圆1总有公共点,则m的取值范围是()A.m1 B.m0C.0m5且m1 D.m1且m5答案D解析方法一由于直线ykx1恒过点(0,1),所以点(0,1)必在椭圆内或椭圆上,则00且m5,5k2m10,m1且m5.2.已知直线l:y2xm,椭圆C:1.试问当m取何值时,直线l与椭圆C:(1)有两个不重合的公共点;(2)有且只有一个公共点;(3)没有公共点.解将直线l的方程与椭圆C的方程联立,得方程组将代入,整理得9x28mx2m240.方程根的判别式(8m)249(2m24)8m2144.(1)当0,即3m3时,方程有两个不同的实数根
2、,可知原方程组有两组不同的实数解.这时直线l与椭圆C有两个不重合的公共点.(2)当0,即m3时,方程有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l与椭圆C有两个互相重合的公共点,即直线l与椭圆C有且只有一个公共点.(3)当0,即m3时,方程没有实数根,可知原方程组没有实数解.这时直线l与椭圆C没有公共点.思维升华 研究直线与椭圆位置关系的方法(1)研究直线和椭圆的位置关系,一般转化为研究直线方程与椭圆方程组成的方程组解的个数.(2)对于过定点的直线,也可以通过定点在椭圆内部或椭圆上判定直线和椭圆有交点. 弦长及中点弦问题命题点1弦长问题例1斜率为1的直线l与椭圆y21相交于A,
3、B两点,则|AB|的最大值为()A.2 B. C. D.答案C解析设A,B两点的坐标分别为(x1,y1),(x2,y2),直线l的方程为yxt,由消去y,得5x28tx4(t21)0,则x1x2t,x1x2.|AB|x1x2|,当t0时,|AB|max.命题点2中点弦问题例2已知P(1,1)为椭圆1内一定点,经过P引一条弦,使此弦被P点平分,则此弦所在的直线方程为_.答案x2y30解析方法一易知此弦所在直线的斜率存在,设其方程为y1k(x1),弦所在的直线与椭圆相交于A,B两点,A(x1,y1),B(x2,y2).由消去y得,(2k21)x24k(k1)x2(k22k1)0,x1x2,又x1x
4、22,2,解得k.经检验,k满足题意.故此弦所在的直线方程为y1(x1),即x2y30.方法二易知此弦所在直线的斜率存在,设斜率为k,弦所在的直线与椭圆相交于A,B两点,设A(x1,y1),B(x2,y2),则1,1,得0,x1x22,y1y22,y1y20,k.经检验,k满足题意.此弦所在的直线方程为y1(x1),即x2y30.思维升华 (1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,应用根与系数的关系,解决相关问题.涉及中点弦的问题时用“点差法”解决,往往会更简单.记住必须检验.(2)设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|(
5、k为直线斜率).(3)利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.跟踪训练1(1)已知椭圆两顶点A(1,0),B(1,0),过焦点F(0,1)的直线l与椭圆交于C,D两点,当|CD|时,则直线l的方程为_.答案xy10或xy10.解析由题意得b1,c1.a2b2c2112.椭圆方程为x21.若直线l斜率不存在时,|CD|2,不符合题意.若l斜率存在时,设l的方程为ykx1,联立得(k22)x22kx10.8(k21)0恒成立.设C(x1,y1),D(x2,y2).x1x2,x1x2.|CD|x1x2|.即,解得k22,k.直线l方程为xy10或xy10.(2)(
6、2019石家庄模拟)已知椭圆1(ab0),点F为左焦点,点P为下顶点,平行于FP的直线l交椭圆于A,B两点,且AB的中点为M,则椭圆的离心率为()A. B. C. D.答案A解析设A(x1,y1),B(x2,y2).AB的中点为M,x1x22,y1y21.PFl,kPFkl.1,1.0,0,可得2bca2,4c2(a2c2)a4,化为4e44e210,解得e2,又0eb0)的左焦点为F,上顶点为B.已知椭圆的短轴长为4,离心率为.(1)求椭圆的方程;(2)设点P在椭圆上,且异于椭圆的上、下顶点,点M为直线PB与x轴的交点,点N在y轴的负半轴上,若|ON|OF|(O为原点),且OPMN,求直线P
7、B的斜率.解(1)设椭圆的半焦距为c,依题意知,2b4,又a2b2c2,可得a,b2,c1.所以,椭圆的方程为1.(2)由题意,设P(xP,yP)(xP0),M(xM,0).设直线PB的斜率为k(k0),又B(0,2),则直线PB的方程为ykx2,与椭圆方程联立整理得(45k2)x220kx0,可得xP,代入ykx2得yP,进而直线OP的斜率为.在ykx2中,令y0,得xM.由题意得N(0,1),所以直线MN的斜率为.由OPMN,得1,化简得k2,从而k.所以,直线PB的斜率为或.思维升华(1)解答直线与椭圆相交的题目时,常用到“设而不求”的方法,即联立直线和椭圆的方程,消去y(或x)得一元二
8、次方程,然后借助根与系数的关系,并结合题设条件,建立有关参变量的等量关系求解.(2)涉及直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.跟踪训练2已知椭圆C的两个焦点分别为F1(1,0),F2(1,0),短轴的两个端点分别为B1,B2.(1)若F1B1B2为等边三角形,求椭圆C的方程;(2)若椭圆C的短轴长为2,过点F2的直线l与椭圆C相交于P,Q两点,且,求直线l的方程.解(1)由题意知,F1B1B2为等边三角形,则即解得故椭圆C的方程为3y21.(2)易知椭圆C的方程为y21,当直线l的斜率不存在时,其方程为x1,不符合题意;当直线l的斜率存在时,设直线l的方程为y
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-632102.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
