分享
分享赚钱 收藏 举报 版权申诉 / 30

类型2022-2023学年人教版九年级数学上册第二十三章旋转专题训练试卷(解析版).docx

  • 上传人:a****
  • 文档编号:635381
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:30
  • 大小:864.78KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 人教版 九年级 数学 上册 第二十三 旋转 专题 训练 试卷 解析
    资源描述:

    1、人教版九年级数学上册第二十三章旋转专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将抛物线先绕坐标原点旋转,再向右平移个单位长度,所得抛物线的解析式为()ABCD2、如图,在钝角中,将绕点顺时针旋

    2、转得到,点,的对应点分别为,连接则下列结论一定正确的是()ABCD平分3、如图,将ABC绕点B顺时针旋转50得DBE,点C的对应点恰好落在AB的延长线上,连接AD,下列结论不一定成立的是()AAB=DBBCBD=80CABD=EDABCDBE4、如图,在小正三角形组成的网格中,已有个小正三角形涂黑,还需涂黑个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则的最小值为()ABCD5、下列运动形式属于旋转的是()A在空中上升的氢气球B飞驰的火车C时钟上钟摆的摆动D运动员掷出的标枪6、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD7、如图,六边形ABCDEF的内角都

    3、相等,DAB60,ABDE,则下列结论:ABDE;EFADBC;AFCD;四边形ACDF是平行四边形;六边形ABCDEF既是中心对称图形,又是轴对称图形其中成立的个数是()A2个B3个C4个D5个8、如图,矩形ABCD绕点A逆时针旋转(090)得到矩形ABCD,此时点B恰好在DC边上,若BBC=15,则的大小为()A15B25C30D459、如图,已知正方形的边长为4,以点C为圆心,2为半径作圆,P是上的任意一点,将点P绕点D按逆时针方向旋转,得到点Q,连接,则的最大值是()A6BCD10、如图,ABC是等边三角形,D为BC边上的点,ABD经旋转后到达ACE的位置,那么旋转角为()A75B60

    4、C45D15第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC中,CAB65,在同一平面内,将ABC绕点A逆时针旋转到的位置,使得,则等于_2、如图,在平面直角坐标系中,等腰直角三角形OAB,A90,点O为坐标原点,点B在x轴上,点A的坐标是(1,1)若将OAB绕点O顺时针方向依次旋转45后得到OA1B1,OA2B2,OA3B3,可得A1(,0),A2(1,1),A3(0,),则A2021的坐标是_3、如图,在正方形中,顶点A,在坐标轴上,且,以为边构造菱形(点在轴正半轴上),将菱形与正方形组成的图形绕点逆时针旋转,每次旋转45,则第2022次旋转结束时,点

    5、的坐标为_4、将图1剪成若干小块,再图2中进行拼接平移后能够得到、中的_5、如图,在平面直角坐标系中,等腰直角三角形OAB,点O为坐标原点,点B在x轴上,点A的坐是(1,1)若将绕点O顺时针方向依次旋转45后得到,可得,则的坐标是_三、解答题(5小题,每小题10分,共计50分)1、如图,将矩形ABCD绕点A顺时针旋转得到矩形AEFG,其中点B的对应点E恰好落在边CD上,连结BG交AE于点G,连结BE(1)求证:BE平分AEC;(2)求证:BH=HG2、如图,在的方格纸中,已知格点P,请按要求画格点图形(顶点均在格点上)(1)在图1中画一个锐角三角形,使P为其中一边的中点,再画出该三角形向右平移

    6、2个单位后的图形(2)在图2中画一个以P为一个顶点的钝角三角形,使三边长都不相等,再画出该三角形绕点P旋转后的图形3、如图,ABC中,ABAC1,BAC45,AEF是由ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BECF ;(2)当四边形ACDE为菱形时,求BD的长4、在RtABC中,ACB90,AC2,ABC30,点A关于直线BC的对称点为A,连接AB,点P为直线BC上的动点(不与点B重合),连接AP,将线段AP绕点P逆时针旋转60,得到线段PD,连接AD,BD【问题发现】(1)如图1,当点D在直线BC上时,线段BP与AD的数量关系为,DAB;【拓展探究】(2)

    7、如图2,当点P在BC的延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;【问题解决】(3)当BDA30时,求线段AP的长度5、如图1,已知正方形的边在正方形的边上,连接、(1)试猜想与的数量关系与位置关系;(2)将正方形绕点按顺时针方向旋转,使点落在边上,如图2,连接和你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由-参考答案-一、单选题1、C【解析】【分析】先根据点绕坐标原点旋转的坐标变换规律、待定系数法求出旋转后的抛物线的解析式,再根据二次函数的图象平移的规律即可得【详解】将抛物线的顶点式为则其与x轴的交点坐标为,顶点坐标为点绕坐标原点旋转的

    8、坐标变换规律:横、纵坐标均变为相反数则绕坐标原点旋转后,所得抛物线与x轴的交点坐标为,顶点坐标为设旋转后所得抛物线为将点代入得:,解得即旋转后所得抛物线为则再向右平移个单位长度,所得抛物线的解析式为即故选:C【考点】本题考查了点绕坐标原点旋转的坐标变换规律、待定系数法求二次函数解析式、二次函数的图象平移的规律,熟练掌握坐标旋转变换规律和二次函数的图象平移规律是解题关键2、D【解析】【分析】根据旋转可知CABEAD,CAE=70,结合BAC=35,可知BAE=35,则可证得CABEAB,即可作答【详解】根据旋转的性质可知CABEAD,CAE=70,BAE=CAE-CAB=70-35=35,AC=

    9、AE,AB=AD,BC=DE,ABC=ADE,故A、B错误,CAB=EAB,AC=AE,AB=AB,CABEAB,EABEADBEA=DEA,AE平分BED,故D正确,AD+BE=AB+BEAE=AC,故C错误,故选:D【考点】本题考查了旋转的性质和全等三角形的判定与性质,求出BAE=35是解答本题的关键3、C【解析】【分析】利用旋转的性质得ABCDBE ,BA=BD,BC=BE,ABD=CBE=50,C=E,再由A、B、E三点共线,由平角定义求出CBD=80,由三角形外角性质判断出ABDE【详解】解:ABC绕点B顺时针旋转50得DBE, AB=DB,BC=BE,ABD=CBE=50,ABCD

    10、BE ,故选项A、D一定成立;点C的对应点E恰好落在AB的延长线上,ABD+CBE+CBD =180,.CBD=180-50-50=80,故选项B一定成立;又 ABD=E+BDE,ABDE,故选项C错误,故选C【考点】本题主要考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等4、C【解析】【分析】由等边三角形有三条对称轴可得答案【详解】如图所示,n的最小值为3故选C【考点】本题考查了利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质5、C【解析】【分析】根据旋转的定义逐一进行判断即可得到正确的结论.【详解】解:在空气中

    11、上升的氢气球,飞驰的火车,运动员掷出标枪属于平移现象,时钟上钟摆的摆动属于旋转现象.故选:C.【考点】本题主要考查关于旋转的知识,题目比较简单,属于基础题目,大部分学生能够正确完成,熟练掌握旋转的定义是解决本题的关键.6、B【解析】【分析】利用轴对称图形和中心对称图形的定义逐项判断即可【详解】A是轴对称图形不是中心对称图形故A不符合题意B是轴对称图形也是中心对称图形故B符合题意C是轴对称图形但不是中心对称图形故C不符合题意D不是中心对称图形也不是轴对称图形故D不符合题意故选:B【考点】本题考查轴对称图形和中心对称图形的定义,根据选项灵活判断其图形是否符合题意是解本题的关键7、D【解析】【分析】

    12、根据六边形ABCDEF的内角都相等,DAB=60,平行线的判定,平行四边形的判定,中心对称图形的定义一一判断即可【详解】六边形ABCDEF的内角都相等,EFA=FED=FAB=ABC=120DAB=60,DAF=60,EFA+DAF=180,DAB+ABC=180,ADEFCB,故正确,FED+EDA=180,EDA=ADC=60,EDA=DAB,ABDE,故正确FAD=EDA,CDA=BAD,EFADBC,四边形EFAD,四边形BCDA是等腰梯形,AF=DE,AB=CDAB=DE,AF=CD,故正确,连接CF与AD交于点O,连接DF、AE、DB、BECDA=DAF,AFCD,AF=CD,四边

    13、形ACDF是平行四边形,故正确,同法可证四边形AEDB是平行四边形,AD与CF,AD与BE互相平分,OF=OC,OE=OB,OA=OD,六边形ABCDEF是中心对称图形,且是轴对称,故正确故选D【考点】本题考查了平行四边形的判定和性质、平行线的判定和性质、轴对称图形、中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型8、C【解析】【分析】由矩形的性质,可知ABC90,再由旋转,可知ABB为等腰三角形,根据内角和求解即可.【详解】解:连接BB四边形ABCD是矩形,ABC=90,CBB=15,ABB=90-15=75,AB=AB,ABB=ABB=75,BAB=180-275

    14、=30,=30,故选:C【考点】本题考查旋转的性质,矩形的性质,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题9、A【解析】【分析】连接CP,AQ,以A为圆心,以AQ为半径画圆,延长BA交于E根据正方形的性质,旋转的性质,角的和差关系,全等三角形的判定定理和性质求出AQ的长度,根据三角形三边关系确定当点Q与点E重合时,BQ取得最大值,最后根据线段的和差关系计算即可【详解】解:如下图所示,连接CP,AQ,以A为圆心,以AQ为半径画圆,延长BA交于E正方形ABCD的边长为4,的半径为2,AD=CD=AB=4,ADC=90,CP=2点P绕点D按逆时针方向旋转90得到点Q,QDP=90,

    15、QD=PDADC=QDPADC-QDC=QDP-QDC,即ADQ=CDPAQ=CP=2AE=AQ=2P是上任意一点,点Q在上移动当点Q与点E重合时,BQ取得最大值为BEBE=AE+AB=6故选:A【考点】本题考查正方形的性质,旋转的性质,角的和差关系,全等三角形的判定定理和性质,三角形三边关系,线段的和差关系,综合应用这些知识点是解题关键10、B【解析】【分析】根据题意可知旋转角为,根据等边三角形的性质即可求解【详解】解:ABD经旋转后到达ACE的位置,ABC是等边三角形,旋转角为,故选B【考点】本题考查了等边三角形的性质,找旋转角,找到旋转前后对应的线段所产生的夹角即为旋转是解题的关键二、填

    16、空题1、50【解析】【分析】由平行线的性质可求得的度数,然后由旋转的性质得到,然后依据三角形的性质可知的度数,依据三角形的内角和定理可求得的度数,从而得到的度数.【详解】解:由旋转的性质可知:故答案为:.2、【解析】【分析】根据题意得:A1(,0),A2(1,1),A3(0,), ,由此发现,旋转8次一个循环,再由 ,即可求解【详解】解:根据题意得:A1(,0),A2(1,1),A3(0,), ,由此发现,旋转8次一个循环, ,A2021的坐标是 故答案为:【考点】本题主要考查了图形的旋转,明确题意,准确得到规律是解题的关键3、【解析】【分析】根据直角坐标系、正方形的性质,得,根据勾股定理的性

    17、质,得;根据菱形的性质,得;根据图形规律和旋转的性质分析,即可得到答案【详解】正方形中,顶点A,在坐标轴上,且, 以为边构造菱形(点在轴正半轴上), 根据题意,得菱形与正方形组成的图形绕点逆时针旋转,每8次一个循环除以8,余数为6点的坐标和点的坐标相同根据题意,第2次旋转结束时,即逆向旋转时,点的坐标为: 第4次旋转结束时,即逆向旋转时,点的坐标为: 第6次旋转结束时,即逆向旋转时,点的坐标为: 点的坐标为:故答案为:【考点】本题考查了图形规律、旋转、菱形、正方形、勾股定理、直角坐标系的知识;解题的关键是熟练掌握旋转、菱形、正方形的性质,从而完成求解4、#【解析】【详解】解:根据图形1可得剪成

    18、若干小块,再图2中进行拼接平移后能够得到、,不能拼成,故答案为:5、【解析】【分析】根据题意求出:,的坐标,推导出每旋转8次为一个循环,再由,求出对应的点坐标即可【详解】解:根据题意得:, ,可推导一般性规律:点坐标的变化每旋转8次为一个循环, ,的坐标是 故答案为:【考点】本题主要考查了图形的旋转,点坐标的规律探究解题的关键在于推导出一般性规律三、解答题1、 (1)见详解(2)见详解【解析】【分析】(1)根据矩形ABCD绕点A顺时针旋转得到矩形AEFG,得出AB=AE,可得ABE=AEB,根据ABCD,得出CEB=ABE=AEB即可;(2)过B作BMAE于M,先证CEBMEB(AAS),再证

    19、BMHGAH(AAS)即可(1)证明:矩形ABCD绕点A顺时针旋转得到矩形AEFG,AB=AE,ABE=AEB,矩形ABCD,ABCD,CEB=ABE=AEB,BE平分AEC;(2)证明:过B作BMAE于M,四边形ABCD为矩形,C=90BC=AD,BME=C=90,在CEB和MEB中,CEBMEB(AAS),BC=BM,矩形ABCD绕点A顺时针旋转得到矩形AEFG,AD=AG,HAG=90,BM=GA,在BMH和GAH中,BMHGAH(AAS),BH=GH【考点】本题考查矩形性质,矩形旋转性质,等腰三角形判定与性质,平行线性质,角平分线判定,三角形全等判定与性质,掌握矩形性质,矩形旋转性质,

    20、等腰三角形判定与性质,平行线性质,角平分线判定,三角形全等判定与性质是解题关键2、 (1)见解析(2)见解析【解析】【分析】(1)根据题意画出合适的图形即可,注意本题答案不唯一,主要作出的图形符合题意即可;(2)根据题意画出合适的图形即可,注意本题答案不唯一,主要作出的图形符合题意即可(1)画法不唯一,如图1或图2等(2)画法不唯一,如图3或图4等【考点】本题考查作图旋转变换、作图平移变换,解答本题的关键是明确题意,画出相应的图形,注意不要忘记画出平移后或旋转后的图形3、(1)证明见解析(2)-1 【解析】【分析】(1)先由旋转的性质得AE=AB,AF=AC,EAF=BAC,则EAF+BAF=

    21、BAC+BAF,即EAB=FAC,利用AB=AC可得AE=AF,得出ACFABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,ACDE,根据等腰三角形的性质得AEB=ABE,根据平行线得性质得ABE=BAC=45,所以AEB=ABE=45,于是可判断ABE为等腰直角三角形,所以BE=AC=,于是利用BD=BEDE求解【详解】(1)AEF是由ABC绕点A按顺时针方向旋转得到的,AE=AB,AF=AC,EAF=BAC,EAF+BAF=BAC+BAF,即EAB=FAC,在ACF和ABE中,ACFABEBE=CF.(2)四边形ACDE为菱形,AB=AC=1,DE=AE=AC=

    22、AB=1,ACDE,AEB=ABE,ABE=BAC=45,AEB=ABE=45,ABE为等腰直角三角形,BE=AC=,BD=BEDE=考点:1旋转的性质;2勾股定理;3菱形的性质4、(1)相等;90;(2)成立,证明见解析;(3)线段AP的长度为4或4【解析】【分析】(1)首先推知AP=PB,PC=AP,根据全等三角形的性质即可得到结论;(2)如图,连接AD,根据等边三角形的性质得到AB=AA,由旋转的性质得到AP=DP,APD=60,推出AAB是等边三角形,得到PA=PD=AD,根据全等三角形的性质即可得到结论;(3)如图,由(2)知,BAD=90根据已知条件得到D在BA的延长线上,由旋转的

    23、性质得到AP=DP,APD=60,推出AAB是等边三角形,得到PA=PD=AD,于是得到结论;如图,由(2)知,BAD=90,根据旋转的性质得到AP=DP,APD=60,求得PA=PD=AD,PAD=BAA=60,根据全等三角形的性质得到PB=DA=4,根据勾股定理即可得到结论【详解】(1)在RtABC中,ACB90,AC2,ABC30,点A关于直线BC的对称点为A,则ABCABC30,ABABABA60ABA是等边三角形,AAB60,APD60,BAPABPPAC30,APPB,PCAP,APPD,PCPD,PCCD,ACAC,ACPACD,APCADC(SAS),DAAP,CADPAC30

    24、,PBDA,BAD60+3090,故答案为:相等;90;(2)成立,证明如下:如图,连接AD,AAB是等边三角形,ABAA,由旋转的性质可得:APDP,APD60,APD是等边三角形,PAPDAD,BAPBAC+CAP,AADPAD+CAP,BACPAD,BAPAAD,在BAP与AAD中,BAPAAD(SAS),BPAD,AADABC30BAA60,DABBAA+AAD90;(3)如图,当点P在BC的延长线上时,由(2)知,BAD90BDA30,DBA60,D在BA的延长线上,由旋转的性质可得:APDP,APD60,APD是等边三角形,PAPDAD,BA4,BD8,APAD4; 如图,当点P在

    25、CB的延长线上时,由(2)知,BAD90,BDA30,BA4,DA4,由旋转的性质可得:APDP,APD60,APD是等边三角形,PAPDAD,PADBAA60,PABDAA,ABAA,ABPAAD(SAS),PBDA4,AC2,BC2,CP6,AP4综上所述,线段AP的长度为4或4【考点】本题属于几何变换综合题,考查了全等三角形的判定和性质、等边三角形的判定和性质,正确的作出图形是解题的关键5、(1)AE=GC,AEGC;(2)成立,见解析【解析】【分析】(1)观察图形,、的位置关系可能是垂直,下面着手证明由于四边形、都是正方形,易证得,则,由于、互余,所以、互余,由此可得(2)题(1)的结论仍然成立,参照(1)题的解题方法,可证,得,由于、互余,而、互余,那么;由图知,即,由此得证【详解】解:(1)答:;证明:如图1中,延长交于点在正方形与正方形中,故答案为,(2)答:成立;证明:如图2中,延长和相交于点在正方形和正方形中,;,又,又,【考点】本题主要考查旋转的性质以及全等三角形的判定和性质,解题的关键是需要注意的是:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年人教版九年级数学上册第二十三章旋转专题训练试卷(解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-635381.html
    相关资源 更多
  • 全国版2022高考数学一轮复习第8章立体几何第3讲直线平面平行的判定及性质试题1理含解析20210316187.docx全国版2022高考数学一轮复习第8章立体几何第3讲直线平面平行的判定及性质试题1理含解析20210316187.docx
  • 全国版2022高考数学一轮复习第8章立体几何第2讲空间点线面的位置关系试题2理含解析20210316186.docx全国版2022高考数学一轮复习第8章立体几何第2讲空间点线面的位置关系试题2理含解析20210316186.docx
  • 全国版2022高考数学一轮复习第8章立体几何第2讲空间点线面的位置关系试题1理含解析20210316185.docx全国版2022高考数学一轮复习第8章立体几何第2讲空间点线面的位置关系试题1理含解析20210316185.docx
  • 全国版2022高考数学一轮复习第8章立体几何第1讲空间几何体的结构三视图表面积和体积试题1理含解析20210316183.docx全国版2022高考数学一轮复习第8章立体几何第1讲空间几何体的结构三视图表面积和体积试题1理含解析20210316183.docx
  • 全国版2022高考数学一轮复习第7章不等式第3讲基本不等式试题2理含解析20210316182.docx全国版2022高考数学一轮复习第7章不等式第3讲基本不等式试题2理含解析20210316182.docx
  • 全国版2022高考数学一轮复习第7章不等式第3讲基本不等式试题1理含解析20210316181.docx全国版2022高考数学一轮复习第7章不等式第3讲基本不等式试题1理含解析20210316181.docx
  • 全国版2022高考数学一轮复习第7章不等式第2讲二元一次不等式组与简单的线性规划问题试题2理含解析20210316180.docx全国版2022高考数学一轮复习第7章不等式第2讲二元一次不等式组与简单的线性规划问题试题2理含解析20210316180.docx
  • 全国版2022高考数学一轮复习第7章不等式第2讲二元一次不等式组与简单的线性规划问题试题1理含解析20210316179.docx全国版2022高考数学一轮复习第7章不等式第2讲二元一次不等式组与简单的线性规划问题试题1理含解析20210316179.docx
  • 全国版2022高考数学一轮复习第7章不等式第1讲不等关系与一元二次不等式试题1理含解析20210316177.docx全国版2022高考数学一轮复习第7章不等式第1讲不等关系与一元二次不等式试题1理含解析20210316177.docx
  • 全国版2022高考数学一轮复习第6章数列第4讲数列求和及数列的综合应用试题1理含解析20210316175.docx全国版2022高考数学一轮复习第6章数列第4讲数列求和及数列的综合应用试题1理含解析20210316175.docx
  • 全国版2022高考数学一轮复习第6章数列第3讲等比数列及其前n项和试题2理含解析20210316174.docx全国版2022高考数学一轮复习第6章数列第3讲等比数列及其前n项和试题2理含解析20210316174.docx
  • 全国版2022高考数学一轮复习第6章数列第3讲等比数列及其前n项和试题1理含解析20210316173.docx全国版2022高考数学一轮复习第6章数列第3讲等比数列及其前n项和试题1理含解析20210316173.docx
  • 全国版2022高考数学一轮复习第6章数列第2讲等差数列及其前n项和试题1理含解析20210316171.docx全国版2022高考数学一轮复习第6章数列第2讲等差数列及其前n项和试题1理含解析20210316171.docx
  • 全国版2022高考数学一轮复习第6章数列第1讲数列的概念与简单表示法试题2理含解析20210316170.docx全国版2022高考数学一轮复习第6章数列第1讲数列的概念与简单表示法试题2理含解析20210316170.docx
  • 全国版2022高考数学一轮复习第6章数列第1讲数列的概念与简单表示法试题1理含解析20210316169.docx全国版2022高考数学一轮复习第6章数列第1讲数列的概念与简单表示法试题1理含解析20210316169.docx
  • 全国版2022高考数学一轮复习第5章平面向量第2讲平面向量的数量积及应用试题2理含解析20210316168.docx全国版2022高考数学一轮复习第5章平面向量第2讲平面向量的数量积及应用试题2理含解析20210316168.docx
  • 全国版2022高考数学一轮复习第5章平面向量第2讲平面向量的数量积及应用试题1理含解析20210316167.docx全国版2022高考数学一轮复习第5章平面向量第2讲平面向量的数量积及应用试题1理含解析20210316167.docx
  • 全国版2022高考数学一轮复习第5章平面向量第1讲平面向量的概念及线性运算平面向量基本定理及坐标运算试题2理含解析20210316166.docx全国版2022高考数学一轮复习第5章平面向量第1讲平面向量的概念及线性运算平面向量基本定理及坐标运算试题2理含解析20210316166.docx
  • 全国版2022高考数学一轮复习第5章平面向量第1讲平面向量的概念及线性运算平面向量基本定理及坐标运算试题1理含解析20210316165.docx全国版2022高考数学一轮复习第5章平面向量第1讲平面向量的概念及线性运算平面向量基本定理及坐标运算试题1理含解析20210316165.docx
  • 全国版2022高考数学一轮复习第4章三角函数解三角形第4讲正余弦定理及解三角形试题2理含解析20210316164.docx全国版2022高考数学一轮复习第4章三角函数解三角形第4讲正余弦定理及解三角形试题2理含解析20210316164.docx
  • 全国版2022高考数学一轮复习第4章三角函数解三角形第4讲正余弦定理及解三角形试题1理含解析20210316163.docx全国版2022高考数学一轮复习第4章三角函数解三角形第4讲正余弦定理及解三角形试题1理含解析20210316163.docx
  • 全国版2022高考数学一轮复习第4章三角函数解三角形第3讲三角函数的图象与性质试题2理含解析20210316162.docx全国版2022高考数学一轮复习第4章三角函数解三角形第3讲三角函数的图象与性质试题2理含解析20210316162.docx
  • 全国版2022高考数学一轮复习第4章三角函数解三角形第3讲三角函数的图象与性质试题1理含解析20210316161.docx全国版2022高考数学一轮复习第4章三角函数解三角形第3讲三角函数的图象与性质试题1理含解析20210316161.docx
  • 全国版2022高考数学一轮复习第4章三角函数解三角形第2讲三角恒等变换试题2理含解析20210316160.docx全国版2022高考数学一轮复习第4章三角函数解三角形第2讲三角恒等变换试题2理含解析20210316160.docx
  • 全国版2022高考数学一轮复习第4章三角函数解三角形第2讲三角恒等变换试题1理含解析20210316159.docx全国版2022高考数学一轮复习第4章三角函数解三角形第2讲三角恒等变换试题1理含解析20210316159.docx
  • 全国版2022高考数学一轮复习第4章三角函数解三角形第1讲三角函数的基本概念同角三角函数的基本关系与诱导公式试题2理含解析20210316158.docx全国版2022高考数学一轮复习第4章三角函数解三角形第1讲三角函数的基本概念同角三角函数的基本关系与诱导公式试题2理含解析20210316158.docx
  • 全国版2022高考数学一轮复习第4章三角函数解三角形第1讲三角函数的基本概念同角三角函数的基本关系与诱导公式试题1理含解析20210316157.docx全国版2022高考数学一轮复习第4章三角函数解三角形第1讲三角函数的基本概念同角三角函数的基本关系与诱导公式试题1理含解析20210316157.docx
  • 全国版2022高考数学一轮复习第3章导数及其应用第4讲定积分与微积分基本定理试题2理含解析20210316156.docx全国版2022高考数学一轮复习第3章导数及其应用第4讲定积分与微积分基本定理试题2理含解析20210316156.docx
  • 全国版2022高考数学一轮复习第3章导数及其应用第3讲导数的综合应用试题1理含解析20210316153.docx全国版2022高考数学一轮复习第3章导数及其应用第3讲导数的综合应用试题1理含解析20210316153.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1