分享
分享赚钱 收藏 举报 版权申诉 / 32

类型2022-2023学年人教版九年级数学上册第二十三章旋转同步测试试题(解析版).docx

  • 上传人:a****
  • 文档编号:635419
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:32
  • 大小:874.94KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 人教版 九年级 数学 上册 第二十三 旋转 同步 测试 试题 解析
    资源描述:

    1、人教版九年级数学上册第二十三章旋转同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在钝角中,将绕点顺时针旋转得到,点,的对应点分别为,连接则下列结论一定正确的是()ABCD平分2、下列图形中

    2、,是中心对称图形但不是轴对称图形的是()ABCD3、有下列说法:平行四边形具有四边形的所有性质:平行四边形是中心对称图形:平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形其中正确说法的序号是()ABCD4、二次函数的图象的顶点坐标是,且图象与轴交于点将二次函数的图象以原点为旋转中心顺时针旋转180,则旋转后得到的函数解析式为()ABCD5、在方格纸中,选择标有序号中的一个小正方形涂黑,与图中阴影部分构成中心对称图形该小正方形的序号是()ABCD6、下列命题是真命题的是()A一个角的补角一定大于这个角B平行于同一条直线的两条

    3、直线平行C等边三角形是中心对称图形D旋转改变图形的形状和大小7、将矩形绕点顺时针旋转,得到矩形当时,下列针对值的说法正确的是()A或B或CD8、如图,边长为3的正五边形ABCDE,顶点A、B在半径为3的圆上,其他各点在圆内,将正五边形ABCDE绕点A逆时针旋转,当点E第一次落在圆上时,则点C转过的度数为()A12B16C20D249、已知四边形ABCD的对角线相交于点O,且OA=OB=OC=OD,那么这个四边形是()A是中心对称图形,但不是轴对称图形B是轴对称图形,但不是中心对称图形C既是中心对称图形,又是轴对称图形D既不是中心对称图形,又不是轴对称图形10、下列图形中既是轴对称图形,也是中心

    4、对称图形的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在RtABC,B90,ACB50将RtABC在平面内绕点A逆时针旋转到ABC的位置,连接CC若ABCC,则旋转角的度数为_2、如图,将线段AB绕点O顺时针旋转90得到线段,那么的对应点的坐标是_3、若点与点关于原点成中心对称,则_4、如图,ABC中,AB=6,DEAC,将BDE绕点B顺时针旋转得到BDE,点D的对应点D落在边BC上已知BE=5,DC=4,则BC的长为_5、如图,在RtABC中,ACBC1,D是斜边AB上一点(与点A,B不重合),将BCD绕着点C旋转90到ACE,连结DE交AC于

    5、点F,若AFD是等腰三角形,则AF的长为 _三、解答题(5小题,每小题10分,共计50分)1、如图,点是的边上的动点,连接,并将线段绕点逆时针旋转得到线段(1)如图1,作,垂足在线段上,当时,判断点是否在直线上,并说明理由;(2)如图2,若,求以、为邻边的正方形的面积2、如图,在矩形ABCD中,对角线AC的中点为O,点G,H在对角线AC上,AGCH,直线GH绕点O逆时针旋转角,与边AB、CD分别相交于点E、F(点E不与点A、B重合)(1)求证:四边形EHFG是平行四边形;(2)若90,AB9,AD3,求AE的长3、(1)如图1,等边ABC内有一点P,若AP8,BP15,CP17,求APB的大小

    6、;(提示:将ABP绕顶点A旋转到ACP处)(2)如图2,在ABC中,CAB90,ABAC,E、F为BC上的点,且EAF45求证:EF2BE2+FC2;(3)如图3,在ABC中,C90,ABC30,点O为ABC内一点,连接AO、BO、CO,且AOCCOBBOA120,若AC,求OA+OB+OC的值4、如图所示的正方形网格中,每个小正方形的边长都为1,的顶点都在网格线的交点上,点B坐标为,点C的坐标为(1)根据上述条件,在网格中画出平面直角坐标系;(2)画出关于x轴对称图形;(3)点A绕点B顺时针旋转90,点A对应点的坐标为_5、如图,先将绕点顺时针旋转得到,再将线段绕点顺时针旋转得到,连接、,且

    7、(1)若求证:、三点共线;求的长;(2)若,点在边上,求线段的最小值-参考答案-一、单选题1、D【解析】【分析】根据旋转可知CABEAD,CAE=70,结合BAC=35,可知BAE=35,则可证得CABEAB,即可作答【详解】根据旋转的性质可知CABEAD,CAE=70,BAE=CAE-CAB=70-35=35,AC=AE,AB=AD,BC=DE,ABC=ADE,故A、B错误,CAB=EAB,AC=AE,AB=AB,CABEAB,EABEADBEA=DEA,AE平分BED,故D正确,AD+BE=AB+BEAE=AC,故C错误,故选:D【考点】本题考查了旋转的性质和全等三角形的判定与性质,求出B

    8、AE=35是解答本题的关键2、B【解析】【分析】根据中心对称图形和轴对称图形的定义判断即可【详解】解:A中的图形旋转180后不能与原图形重合,A中的图象不是中心对称图形,选项A不正确;B中的图形旋转180后能与原图形重合,B中的图形是中心对称图形,但不是轴对称图形,选项B正确;C中的图形旋转180后能与原图形重合,C中的图形是中心对称图形,也是轴对称图形,选项C不正确;D中的图形旋转180后不能与原图形重合,D中的图形不是中心对称图形, 选项D不正确;故选:B【考点】本题考查了轴对称图形和中心对称图形的定义,熟练掌握轴对称图形和中心对称图形的定义是解题的关键3、D【解析】【分析】根据平行四边形

    9、的性质、中心对称图形的定义和全等三角形的判定进行逐一判定即可【详解】解:平行四边形是四边形的一种,平行四边形具有四边形的所有性质,故正确:平行四边形绕其对角线的交点旋转180度能够与自身重合,平行四边形是中心对称图形,故正确:四边形ABCD是平行四边形,AD=BC,CD=AB,ADC=CBAADCCBA(SAS)同理可以证明ABDCDB平行四边形的任一条对角线可把平行四边形分成两个全等的三角形,故正确;四边形ABCD是平行四边形,OA=OC,OD=OB,平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形,故正确故选D【考点】本题主要考查了中心对称图形的定义,平行四边形的性质,全等三角

    10、形的判定,三角形中线把面积分成相同的两部分等等,解题的关键在于能够熟练掌握相关知识进行求解4、C【解析】【分析】设将二次函数的图象以原点为旋转中心顺时针旋转180后为:;根据旋转的性质,得的图象的顶点坐标是,且图象与轴交于点,得,再通过列方程并求解,即可得到表达式并转换为顶点式,即可得到答案【详解】设将二次函数的图象以原点为旋转中心顺时针旋转180后为:二次函数的图象的顶点坐标是,且图象与轴交于点的图象的顶点坐标是,且图象与轴交于点 , 故选:C【考点】本题考查了二次函数、旋转的知识;解题的关键是熟练掌握二次函数图像及解析式、旋转的性质,从而完成求解5、B【解析】【分析】直接利用中心对称图形的

    11、性质得出答案即可【详解】解:如图,把标有序号的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,故选B【考点】本题考查了利用旋转设计图案和中心对称图形的定义,要知道,一个图形绕端点旋转180所形成的图形叫中心对称图形6、B【解析】【分析】由补角的定义、平行线公理,中心对称图形的定义、旋转的性质分别进行判断,即可得到答案【详解】解:A、一个角的补角不一定大于这个角,故A错误;B、平行于同一条直线的两条直线平行,故B正确;C、等边三角形是轴对称图形,不是中心对称图形,故C错误;D、旋转不改变图形的形状和大小,故D错误;故选:B【考点】本题考查了补角的定义、平行线公理,中心对称图形的定义

    12、、旋转的性质,以及判断命题的真假,解题的关键是熟练掌握所学的知识,分别进行判断7、A【解析】【分析】当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据DAG=60,即可得到旋转角的度数【详解】如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:当点G在AD右侧时,取BC的中点H,连接GH交AD于M,GC=GB,GHBC,四边形ABHM是矩形,AM=BH=,GM垂直平分AD,GD=GA=DA,ADG是等边三角形,DAG=60,旋转角=60;当点G在AD左侧时,同理可得ADG是等边三角形,DAG=60,旋转角=360-60=300,故选:A【考点】本题主要考查了旋转的性质,

    13、全等三角形的判定与性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角8、A【解析】【分析】根据点E旋转的角度和点C旋转的角度相等,所以求出点E旋转的角度即可.【详解】解: 如图设圆心为O,连接OA, OB,点E落在圆上的点E处.AB=OA=OB,OAB=,同理OAE=,EAB=,EAO=EAB-OAB=,EAE=OAE-EAO=-=点E旋转的角度和点C旋转的角度相等,点C旋转的角度为,故选A.【考点】本题主要考查旋转的性质,注意与圆的性质的综合.9、C【解析】【分析】先根据已知条件OA=OB=OC=OD,可知四边形ABCD的对角线相等且互相平分,得出四边形ABCD是矩形,然后根据

    14、矩形的对称性,得出结果【详解】解:如图所示:四边形ABCD的对角线相交于点O且OA=OB=OC=OD,OA=OC,OB=OD;AC=BD,四边形ABCD是矩形,四边形ABCD既是轴对称图形,又是中心对称图形故选:C【考点】本题主要考查了矩形的判定及矩形的对称性对角线相等且互相平分的四边形是矩形,矩形既是轴对称图形,又是中心对称图形10、B【解析】【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不符合题意;D、不是轴对称图形,

    15、是中心对称图形,故此选项不符合题意故选:B【考点】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合二、填空题1、100【解析】【分析】由,可得,由旋转的性质可得,由三角形内角和定理得,计算求解即可【详解】解:由旋转的性质可得故答案为:100【考点】本题考查了平行的性质,旋转的性质,旋转角,等边对等角,三角形的内角和定理等知识解题的关键在于找出旋转角2、【解析】【分析】过点A作轴,垂足为C,过点作轴,垂足为,证明,所以,根据得到,所以,写出对应点的坐标即可【详解】解:如图,过点A作轴

    16、,垂足为C,过点作轴,垂足为,轴,轴,将线段AB绕点O顺时针旋转90得到线段,故答案为:【考点】本题考查旋转的性质,证明是解答本题的关键3、【解析】【分析】根据关于原点对称的点的特征求出的值,计算即可【详解】解:点与点关于原点成中心对称,故答案为:【考点】本题考查了关于原点对称,熟知关于原点对称的点横纵坐标均互为相反数是解题的关键4、【解析】【详解】解:由旋转可得,BE=BE=5,BD=BD,DC=4,BD=BC4,即BD=BC4,DEAC,即,解得BC=(负值已舍去),即BC的长为故答案为【考点】本题主要考查了旋转的性质,解一元二次方程以及平行线分线段成比例定理的运用,解题时注意:对应点到旋

    17、转中心的距离相等解决问题的关键是依据平行线分线段成比例定理,列方程求解5、或【解析】【分析】RtABC中,AC=BC=1,所以CAB=B=45,ECD=90,CDE=CED=45,分两种情况讨论AF=FD时,AF=AC=1=;AF=AD时,AF=【详解】解:RtABC中,AC=BC=1,CAB=B=45,BCD绕着点C旋转90到ACE,ECD=90,CDE=CED=45,AF=FD时,FDA=FAD=45,AFD=90,CDA=45+45=90=ECD=DAE,EC=CD,四边形ADCE是正方形,AD=DC,AF=AC=1=;AF=AD时,ADF=AFD=67.5,CDB=180-ADE-ED

    18、C=180-67.5-45=67.5,DCB=180-67.5-45=67.5,DCB=CDB,BD=CB=1,AD=AB-BD=,AF=AD=,故答案为:或【考点】本题考查了旋转的性质,正确利用旋转原理和直角三角形的性质,进行分类讨论是解题的关键三、解答题1、(1)点在直线上,见解析;(2)18【解析】【分析】(1)根据,得到,可得线段逆时针旋转落在直线上,即可得解;(2)作于,得出,再根据平行线的性质得到,再根据直角三角形的性质计算即可;【详解】解:(1)结论:点在直线上;,即线段逆时针旋转落在直线上,即点在直线上(2)作于,即以、为邻边的正方形面积 【考点】本题主要考查了旋转综合题,结合

    19、平行线的性质计算是解题的关键2、(1)详见解析;(2)AE5【解析】【分析】(1)由“ASA”可证COFAOE,可得EOFO,且GOHO,可证四边形EHFG是平行四边形;(2)由题意可得EF垂直平分AC,可得AECE,由勾股定理可求AE的长【详解】证明:(1)对角线AC的中点为OAOCO,且AGCHGOHO四边形ABCD是矩形ADBC,CDAB,CDABDCACAB,且COAO,FOCEOACOFAOE(ASA)FOEO,且GOHO四边形EHFG是平行四边形;(2)如图,连接CE90,EFAC,且AOCOEF是AC的垂直平分线,AECE,在RtBCE中,CE2BC2+BE2,AE2(9AE)2

    20、+9,AE5【考点】此题主要考查特殊平行四边形的证明与性质,解题的关键是熟知矩形的性质及勾股定理的运用.3、(1)150;(2)见解析;(3)【解析】【分析】(1)根将APB绕着点A逆时针旋转60得到ACP,据旋转变换前后的两个三角形全等,全等三角形对应边相等,全等三角形对应角相等以及等边三角形的判定和勾股定理逆定理即可得到结论;(2)把ABE绕点A逆时针旋转90得到ACE,根据旋转的性质可得AE=AE,CE=CE,CAE=BAE,ACE=B,EAE=90,再求出EAF=45,从而得到EAF=EAF,然后利用“边角边”证明EAF和EAF全等,根据全等三角形对应边相等可得EF=EF,再利用勾股定

    21、理列式即可得证;(3)将AOB绕点B顺时针旋转60至AOB处,连接OO,根据直角三角形30角所对的直角边等于斜边的一半求出AB=2AC,即AB的长,再根据旋转的性质求出BOO是等边三角形,根据等边三角形的三条边都相等可得BO=OO,等边三角形三个角都是60求出BOO=BOO=60,然后求出C、O、A、O四点共线,再利用勾股定理列式求出AC,从而得到OA+OB+OC=AC【详解】解:(1)如图1,将APB绕着点A逆时针旋转60得到ACP,ACPABP,AP=AP=8、CP=BP=15、APC=APB,由题意知旋转角PA P=60,AP P为等边三角形,P P=AP=8,A PP=60,PP2+P

    22、C2=82+152=172=PC2,PPC=90,APB=APC=A PP+P PC=60+90=150;(2)如图2,把ABE绕着点A逆时针旋转90得到ACE,则AE=AE,CE=BE,CAE=BAE,BAC=90,EAF=45,BAE+CAF=CAF+CAE=FAE=45,EAF=EAF,且AE=AE,AF=AF,AEFAEF(SAS),EF=EF,B+ACB=90,ACB+ACE=90,FCE=90,EF2=CF2+CE2,EF2=BE2+CF2;(3)如图3,将AOB绕点B顺时针旋转60至AOB处,连接OO,在RtABC中,ACB=90,AC=,ABC=30,AB=,BC=,AOB绕点

    23、B顺时针方向旋转60,AOB如图所示;ABC=ABC+60=30+60=90,AB=AB=,BO=BO,AO=AO,BOO是等边三角形,BO=OO,BOO=BOO=60,AOC=COB=BOA=120,COB+BOO=BOA+BOO=120+60=180,C、O、A、O四点共线,在RtABC中,AC=,OA+OB+OC=AO+OO+OC=AC=【考点】本题属于四边形综合题,考查了旋转的性质,全等三角形的判定与性质,勾股定理,利用旋转构造出全等三角形以及直角三角形是解题的关键,属于中考压轴题4、 (1)见解析(2)见解析(3)(2,2)【解析】【分析】(1)根据点B坐标为,点C的坐标为确定原点,

    24、再画出坐标系即可;(2)画出三角形顶点的对称点,再顺次连接即可;(3)画出旋转后点的位置,写出坐标即可(1)解:坐标系如图所示,(2)解:如图所示,就是所求作三角形;(3)解:如图所示,点A绕点B顺时针旋转90的对应点为,坐标为(2,2);故答案为:(2,2)【考点】本题考查了平面直角坐标系作图,解题关键是明确轴对称和旋转的性质,准确作出图形,写出坐标5、 (1)证明见详解;BG= 4(2)线段PD的最小值为2+ 2【解析】【分析】(1)由旋转的性质可得ACD= 90=BCE, AB= DE,BC= CE, AC= CD,ABC=DEC= 135,由等腰三角形的性质可得BEC = 45 =CB

    25、E,可证BEC +CED= 180,可得结论;通过证明四边形ABDG是矩形,可得AD= BG,由等腰直角三角形的性质可求解;(2)由垂线段最短可得当PDAB时,PD的长度有最小值,先证点P,点E,点D三点共线,由勾股定理可求DE的长,由正方形的性质可得BC= PE= 2,即可求解.(1)证明:如图,连接AG,将ABC绕点C顺时针旋转90得到DEC,ABCDEC,ACD= 90=BCE,AB=DE,BC=CE,AC=CD,ABC =DEC= 135BEC= 45=CBE,BEC+CED=180 B、E、D三点共线;将线段DE绕点D顺时针旋转90得到DGDE= DG,EDG = 90AB= DE=

    26、 DG,ABE=ABC-CBE=90,ABE+EDG = 180,AB/DG,四边形ABDG是平行四边形,又BDG = 90四边形ABDG是矩形, AD= BG,AC= CD=4,ACD= 90, AD=AC= 4,BG= 4;(2)如图:点P在边AB上,当PDAB时,PD的长度有最小值由旋转的性质可得:ABC=CED=BCE= 90,BC/ DE,ABC+BPD= 180,DP/ BC,点P,点E,点D三点共线,AC= 2CE,BC=CE= 2,又ABC=BPE=BCE= 90,四边形BPEC是正方形,BC= PE= 2,CD= AC=4, CE= 2,CED = 90, DE=DP=2+2,线段PD的最小值为2+ 2【考点】本题是几何变换综合题,考查了旋转的性质,全等三角形的性质,等腰三角形的性质,矩形的判定和性质,勾股定理等知识,灵活运用这些性质解决问题是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年人教版九年级数学上册第二十三章旋转同步测试试题(解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-635419.html
    相关资源 更多
  • 2014届高考物理(广东专用)二轮专题复习课件:第1讲 相互作用与共点力的平衡.ppt2014届高考物理(广东专用)二轮专题复习课件:第1讲 相互作用与共点力的平衡.ppt
  • 2014届高考物理(广东专用)二轮专题复习课件:第11讲 电学实验中常考的4个问题.ppt2014届高考物理(广东专用)二轮专题复习课件:第11讲 电学实验中常考的4个问题.ppt
  • 2014届高考物理(广东专用)二轮专题复习课件:专题六 原子结构和原子核.ppt2014届高考物理(广东专用)二轮专题复习课件:专题六 原子结构和原子核.ppt
  • 2014届高考物理(广东专用)二轮专题复习课件 第9讲 电磁感应现象及电磁感应规律的应用.ppt2014届高考物理(广东专用)二轮专题复习课件 第9讲 电磁感应现象及电磁感应规律的应用.ppt
  • 2014届高考物理(广东专用)三轮考前通关课件:十一、选修3-3.ppt2014届高考物理(广东专用)三轮考前通关课件:十一、选修3-3.ppt
  • 2014届高考物理(广东专用)三轮考前通关课件:十、选修3-5.ppt2014届高考物理(广东专用)三轮考前通关课件:十、选修3-5.ppt
  • 2014届高考物理(广东专用)三轮考前通关课件:九、电学实验.ppt2014届高考物理(广东专用)三轮考前通关课件:九、电学实验.ppt
  • 2014届高考物理(广东专用)三轮考前通关课件:七、恒定电流与交变电流.ppt2014届高考物理(广东专用)三轮考前通关课件:七、恒定电流与交变电流.ppt
  • 2014届高考物理(广东专用)三轮考前通关课件:一、力和直线运动.ppt2014届高考物理(广东专用)三轮考前通关课件:一、力和直线运动.ppt
  • 审计署计算机中级考试感悟与分享.docx审计署计算机中级考试感悟与分享.docx
  • 2014届高考物理(大纲版)一轮复习配套课件:第9章 第3节 电容器与电容 带电粒子在电场中的运动.ppt2014届高考物理(大纲版)一轮复习配套课件:第9章 第3节 电容器与电容 带电粒子在电场中的运动.ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:第8章 第1节 分子动理论 内能.ppt2014届高考物理(大纲版)一轮复习配套课件:第8章 第1节 分子动理论 内能.ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:第7章 第2节 机械波.ppt2014届高考物理(大纲版)一轮复习配套课件:第7章 第2节 机械波.ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:第6章 第2节 动量守恒定律及其应用.ppt2014届高考物理(大纲版)一轮复习配套课件:第6章 第2节 动量守恒定律及其应用.ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:第6章 第1节 冲量 动量 动量定理.ppt2014届高考物理(大纲版)一轮复习配套课件:第6章 第1节 冲量 动量 动量定理.ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:第5章 第4节 功能关系 能量守恒.ppt2014届高考物理(大纲版)一轮复习配套课件:第5章 第4节 功能关系 能量守恒.ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:第5章 第3节 机械能守恒定律.ppt2014届高考物理(大纲版)一轮复习配套课件:第5章 第3节 机械能守恒定律.ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:第2章 第1节 描述运动的基本概念.ppt2014届高考物理(大纲版)一轮复习配套课件:第2章 第1节 描述运动的基本概念.ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:第1章 第2节 力的合成与分解.ppt2014届高考物理(大纲版)一轮复习配套课件:第1章 第2节 力的合成与分解.ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:第15章 第1节 光电效应 波粒二象性 物质波.ppt2014届高考物理(大纲版)一轮复习配套课件:第15章 第1节 光电效应 波粒二象性 物质波.ppt
  • 审计政务公开要点.docx审计政务公开要点.docx
  • 2014届高考物理(大纲版)一轮复习配套课件:热点强化突破(7).ppt2014届高考物理(大纲版)一轮复习配套课件:热点强化突破(7).ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:热点强化突破(6).ppt2014届高考物理(大纲版)一轮复习配套课件:热点强化突破(6).ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:热点强化突破(5).ppt2014届高考物理(大纲版)一轮复习配套课件:热点强化突破(5).ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:热点强化突破(2).ppt2014届高考物理(大纲版)一轮复习配套课件:热点强化突破(2).ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:热点强化突破(1).ppt2014届高考物理(大纲版)一轮复习配套课件:热点强化突破(1).ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:热点强化突破(13).ppt2014届高考物理(大纲版)一轮复习配套课件:热点强化突破(13).ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:实验四 研究匀变速直线运动(共32张PPT).ppt2014届高考物理(大纲版)一轮复习配套课件:实验四 研究匀变速直线运动(共32张PPT).ppt
  • 审计局法律法规学习培训计划.docx审计局法律法规学习培训计划.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1