分享
分享赚钱 收藏 举报 版权申诉 / 27

类型2022-2023学年度京改版八年级数学上册第十二章三角形定向攻克试卷(解析版).docx

  • 上传人:a****
  • 文档编号:639497
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:27
  • 大小:569.33KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年度 改版 八年 级数 上册 第十二 三角形 定向 攻克 试卷 解析
    资源描述:

    1、京改版八年级数学上册第十二章三角形定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法:若,则为的中点若,则是的平分线,则若,则,其中正确的有()A1个B2个C3个D4个2、如图,在和中,连接

    2、交于点,连接下列结论:;平分;平分其中正确的个数为()A4B3C2D13、如图,在中,连接BC,CD,则的度数是()A45B50C55D804、给出下列命题,正确的有()个等腰三角形的角平分线、中线和高重合; 等腰三角形两腰上的高相等; 等腰三角形最小边是底边;等边三角形的高、中线、角平分线都相等;等腰三角形都是锐角三角形A1个B2个C3个D4个5、在ABC中,那么ABC是()A等腰三角形B钝角三角形C直角三角形D等腰直角三角形6、下列命题是假命题的是()A同旁内角互补,两直线平行B线段垂直平分线上的点到线段两个端点的距离相等C相等的角是对顶角D角是轴对称图形7、如图,与相交于点O,不添加辅助

    3、线,判定的依据是()ABCD8、如图,在中,以各边为斜边分别向外作等腰、等腰、等腰,将等腰和等腰按如图方式叠放到等腰中,已知,则长为()A2BC6D89、如图甲,直角三角形的三边a,b,c,满足的关系利用这个关系,探究下面的问题:如图乙,是腰长为1的等腰直角三角形,延长至,使,以为底,在外侧作等腰直角三角形,再延长至,使,以为底,在外侧作等腰直角三角形,按此规律作等腰直角三角形(,n为正整数),则的长及的面积分别是()A2,B4,C,D2,10、下列电视台标志中是轴对称图形的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示的网格是正方形网格,则_(

    4、点A,B,P是网格线交点).2、如图,在ABC中,点D是AC的中点,分别以AB,BC为直角边向ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中ABMNBC90,连接MN,已知MN4,则BD_3、如图,在中,的中垂线交于点,交于点,已知,的周长为22,则_4、如图,一个高,底面周长的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少为_长5、如图,在中,分别以点为圆心,大于的长为半径画弧,两弧相交于点作直线,交边于点,连接,则的周长为_三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,ACB90,用直尺和圆规在斜边AB上作一点P

    5、,使得点P到点B的距离与点P到边AC的距离相等(保留作图痕迹,不写作法)2、如图,已知AOB,作AOB的平分线OC,将直角尺DEMN如图所示摆放,使EM边与OB边重合,顶点D落在OA边上,DN边与OC交于点P(1)猜想DOP是三角形;(2)补全下面证明过程:OC平分AOBDNEM 3、如图,点、在同一条直线上,请你从下面三个条件中,选出两个作为已知条件,另一个作为结论,推出一个正确的命题;平分(1)上述问题有哪几种正确命题,请按“”的形式一一书写出来;(2)选择(1)中的一个真命题加以说明4、如图,在ABC和DCB中,AD90,ACBD,AC与BD相交于点O,限用无刻度直尺完成以下作图:(1)

    6、在图1中作线段BC的中点P;(2)在图2中,在OB、OC上分别取点E、F,使EFBC5、如图,在和中,(1)当点D在AC上时,如图,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图中的绕点A顺时针旋转,如图,线段BD,CE有怎样的数量关系和位置关系?请说明理由(3)拓展应用:已知等边和等边如图所示,求线段BD的延长线和线段CE所夹锐角的度数-参考答案-一、单选题1、A【解析】【分析】根据直线中点、角平分线、有理数大小比较以及绝对值的性质,逐一判定即可.【详解】当三点不在同一直线上的时候,点C不是AB的中点,故错误;当OC位于AOB的内部时候,此结论成立,故错误;当为负数时,

    7、故错误;若,则,故正确;故选:A.【考点】此题主要考查直线中点、角平分线、有理数大小比较以及绝对值的性质,熟练掌握,即可解题.2、B【解析】【分析】根据题意逐个证明即可,只要证明,即可证明;利用三角形的外角性质即可证明; 作于,于,再证明即可证明平分.【详解】解:,即,在和中,正确;,由三角形的外角性质得:,正确;作于,于,如图所示:则,在和中,平分,正确;正确的个数有3个;故选B【考点】本题是一道几何的综合型题目,难度系数偏上,关键在于利用三角形的全等证明来证明线段相等,角相等.3、B【解析】【分析】连接AC并延长交EF于点M由平行线的性质得,再由等量代换得,先求出即可求出【详解】解:连接A

    8、C并延长交EF于点M,故选B【考点】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型4、B【解析】【详解】解:等腰三角形的顶角角平分线、底边上的中线和底边上的高重合,故本选项错误;等腰三角形两腰上的高相等,本选项正确; 等腰三角形最小边不一定底边,故本选项错误;等边三角形的高、中线、角平分线都相等,本选项正确;等腰三角形可以是钝角三角形,故本选项错误,故选B5、D【解析】【分析】根据等腰三角形的判定和勾股定理逆定理得出三角形的形状即可【详解】a:b:c=1:1:,三角形ABC是等腰三角形设三边长为a,a,,三角形ABC是直角三角形综上所述:ABC是等腰直角三角形故选D【考点】本题

    9、考查了等腰三角形的判定和勾股定理逆定理此题关键是利用勾股定理的逆定理解答6、C【解析】【分析】根据平行线、垂直平分线、对顶角、轴对称图形的性质,逐个分析,即可得到答案【详解】同旁内角互补,则两直线平行,故A正确;线段垂直平分线上的点到线段两个端点的距离相等,故B正确;由对顶角可得是相等的角;相等的角无法证明是对等角,故C错误;角是关于角的角平分线对称的图形,是轴对称图形,故D正确故选:C【考点】本题考查了平行线、垂直平分线、对顶角、轴对称图形、角平分线、命题的知识;解题的关键是熟练掌握平行线、垂直平分线、对顶角、轴对称图形、角平分线的性质,从而完成求解7、B【解析】【分析】根据,正好是两边一夹

    10、角,即可得出答案【详解】解:在ABO和DCO中,故B正确故选:B【考点】本题主要考查了全等三角形的判定,熟练掌握两边对应相等,且其夹角也对应相等的两个三角形全等,是解题的关键8、D【解析】【分析】设ADDBa,AFCFb,BECEc,由勾股定理可求a2+b2c2,由 ,可求b4,即可求解【详解】解:设ADDBa,AFCFb,BECEc,ABa,ACb,BCc,BAC90,AB2+AC2BC2,2a2+2b22c2,a2+b2c2,将等腰RtADB和等腰RtAFC按如图方式叠放到等腰RtBEC,BGGHa,(a+c)(ca)16,c2a232,b232,b4,ACb8,故选:D【考点】本题考查了

    11、勾股定理,折叠的性质,利用整体思想解决问题是本题的关键9、A【解析】【分析】根据题意结合等腰直角三角形的性质,即可判断出的长,再进一步推出一般规律,利用规律求解的面积即可【详解】由题意可得:,为等腰直角三角形,且“直角三角形的三边a,b,c,满足的关系”,根据题意可得:,总结出,归纳得出一般规律:,故选:A【考点】本题考查等腰直角三角形的性质,图形变化类的规律探究问题,立即题意并灵活运用等腰直角三角形的性质归纳一般规律是解题关键10、A【解析】【分析】根据轴对称图形的定义进行判断,即一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形【详解】解:A选项中的图形是轴对

    12、称图形,对称轴有两条,如图所示;B、C、D选项中的图形均不能沿某条直线折叠,直线两旁的部分能够互相重合,因此,它们都不是轴对称图形;故选:A【考点】本题考查了轴对称图形的概念,其中正确理解轴对称图形的概念是解题关键二、填空题1、45【解析】【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到PDB=90,根据三角形外角的性质即可得到结论【详解】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,PD2+DB2=PB2,PDB=90,即PBD为等腰直角三角形,DP

    13、B=PAB+PBA=45,故答案为:45【考点】本题考查了勾股定理的逆定理,勾股定理,三角形的外角的性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键2、2【解析】【分析】延长BD到E,使DE=BD,连接AE,证明ADECDB(SAS),可得AE=CB,EAD=BCD,再根据ABM和BCN是等腰直角三角形,证明MBNBAE,可得MN=BE,进而可得BD与MN的数量关系即可求解【详解】解:如图,延长BD到E,使DE=BD,连接AE,点D是AC的中点,AD=CD,在ADE和CDB中,ADECDB(SAS),AE=CB,EAD=BCD,ABM和BCN是等腰直角三角形,AB=BM,CB=N

    14、B,ABM=CBN=90,BN=AE,又MBN+ABC=360-90-90=180,BCA+BAC+ABC=180,MBN=BCA+BAC=EAD+BAC=BAE,在MBN和BAE中,MBNBAE(SAS),MN=BE,BE=2BD,MN=2BD又MN=4,BD=2,故答案为:2【考点】本题考查了全等三角形的判定与性质、等腰直角三角形,解决本题的关键是掌握全等三角形的判定与性质3、12【解析】【分析】由的中垂线交于点,可得再利用的周长为22,列方程解方程可得答案【详解】解: 的中垂线交于点, ,的周长为22, 故答案为:【考点】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线的性质是解

    15、题的关键4、20m【解析】【分析】试题分析:要求登梯的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理【详解】将圆柱表面按一周半开展开呈长方形,圆柱高16m,底面周长8m,设螺旋形登梯长为xm,x2=(18+4)2+162=400, 登梯至少=20m故答案为:20m【考点】本题考查圆柱形侧面展开图新问题,涉及勾股定理,掌握按要求将圆柱侧面展开图形的方法,会利用圆周,高与对角线组成直角三角形,用勾股定理解决问题是关键5、【解析】【分析】由题意可得MN为AB的垂直平分线,所以AD=BD,进一步可以求出的周长.【详解】在中,分别以A、B为圆心,大于的长为半径

    16、画弧,两弧交于M,N,作直线MN,交BC边于D,连接AD;MN为AB的垂直平分线,AD=BD,的周长为:AD+DC+AC=BC+AC=13;故答案为13.【考点】本题主要考查的是垂直平分线的运用,掌握定义及相关方法即可.三、解答题1、详见解析【解析】【分析】先作ABC的角平分线BD,再过点D作AC的垂线交AB于P,则利用PDBC得到PDBCBD,于是可证明PDBCBD,所以PBPD【详解】解:如图,点P为所作【考点】此题主要考查尺规作图,解题的关键是熟知角平分线的作法与平行线的性质.2、等腰,DOP,BOP,DPO,BOP,DOP,DPO,OD,PD,见解析【解析】【分析】(1)三角形的种类有

    17、多种,从边和角的关系上看常见的有:等腰三角形、等边三角形、直角三角形、观察此三角形即可大体猜想出三角形的类型;(2)根据角平分线的性质和平行线的性质,求得DOPDPO,即可判断三角形的形状【详解】解:(1)我们猜想DOP是等腰三角形;(2)补全下面证明过程:OC平分AOB,DOPBOP,DNEM,DPOBOP,DOPDPO,ODPD故答案为:等腰,DOP,BOP,DPO,BOP,DOP,DPO,OD,PD【考点】本题考查了角平分线的性质和平行线的性质及等腰三角形,解决本题的关键是掌握平行线的性质定理,找到相等的角3、 (1)有三种正确命题,命题1:;命题2:;命题3:(2)答案不唯一,见解析【

    18、解析】【分析】(1)根据题意,结合平行线的性质和角平分线的性质,选择两个条件做题设,一个条件做结论,得到正确的命题(2)任选一个命题,根据平行线的性质,角平分线的性质和三角形内角和定理即可证明(1)解:上述问题有三种正确命题,分别是:命题1:;命题2:;命题3:(2)解:选择命题1:证明:,平分选择命题2:证明:,平分,选择命题3:证明:平分,【考点】本题考查写出一个命题并求证,正确利用平行线的性质和角平分线的性质写出命题并求证是解题的关键4、(1)见解析;(2)见解析.【解析】【分析】(1)延长BA和CD,它们相交于点Q,然后延长QO交BC于P,则PB=PC,根据线段垂直平分线的逆定理可证明

    19、;(2)连结AP交OB于E,连结DP交OC于F,则EFBC分别证明BEPCFP,BEPCFP可得APB=DPC和PEF=PFE,根据三角形内角和定理和平角的定义可得APB=PEF,即可证明EF/BC.【详解】解:(1)如图1,点P为所作,理由如下:AD90,ACBD,BC=CB,ABCDCBABC=DCB,ACB=DBCQB=QC,OB=OCQ,O在BC的垂直平分线上,延长QO交BC于P,就有P为线段BC的中点;(2)如图2,EF为所作理由如下:ABCDCBAB=DC,又ABC=DCB,BP=PCABPDCPAPB=DPC又DBC=ACB,BP=PCBEPCFPPE=PFPEF=PFE,APB

    20、+DPC+APD=180PEF+PFE+APD=180APB=PEFEF/BC.【考点】本题考查作图复杂作图,等腰三角形的性质,线段垂直平分线的逆定理,平行线的判定定理,全等三角形的判定与性质. 掌握相关定理并能熟练运用是解决此题的关键.5、 (1),见解析;(2),见解析;(3)【解析】【分析】(1)延长BD交CE于F,易证EACDAB,可得BD=CE,ABD=ACE,根据AEC+ACE=90,可得ABD+AEC=90,即可解题;(2)延长BD交CE于F,易证BAD=EAC,即可证明EACDAB,可得BD=CE,ABD=ACE,根据ABC+ACB=90,可以求得CBF+BCF=90,即可解题

    21、(3)直线BD与直线EC的夹角为60如图中,延长BD交EC于F证明,可得结论(1)延长BD交CE于F,在EAC和DAB中,BDCE,ABDACE,AECACE90,ABDAEC90,BFE90,即ECBD;(2)延长BD交CE于F,BADCAD90,CADEAC90,BADEAC,在EAC和DAB中,BDCE,ABDACEABCACB90,CBFBCFABCABDACBACE90,BFC90,即ECBD(3)延长BD交CE于F,BADCAD60,CADEAC60,BADEAC,在EAC和DAB中,BDCE,ABDACEABCACB120,CBFBCFABCABDACBACE120,BFC60【考点】本题考查了等腰直角三角形的性质、全等三角形的判定和性质、等边三角形的性质等知识,本题中求证EACDAB是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度京改版八年级数学上册第十二章三角形定向攻克试卷(解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-639497.html
    相关资源 更多
  • 人教版九年级化学:“有关化学之最”知识归纳练习题(无答案).docx人教版九年级化学:“有关化学之最”知识归纳练习题(无答案).docx
  • 人教版九年级化学:“实验室常见的仪器及使用”质量检测练习题(无答案).docx人教版九年级化学:“实验室常见的仪器及使用”质量检测练习题(无答案).docx
  • 人教版九年级化学:“地壳中元素的分布与含量”能力提升练习题(无答案).docx人教版九年级化学:“地壳中元素的分布与含量”能力提升练习题(无答案).docx
  • 人教版九年级化学:“地壳中元素的分布与含量”知识拓展练习题(无答案).docx人教版九年级化学:“地壳中元素的分布与含量”知识拓展练习题(无答案).docx
  • 人教版九年级化学:“反应类型的判定”能力提升练习题(无答案).docx人教版九年级化学:“反应类型的判定”能力提升练习题(无答案).docx
  • 人教版九年级化学:“反应类型的判定”知识拓展练习题(无答案).docx人教版九年级化学:“反应类型的判定”知识拓展练习题(无答案).docx
  • 人教版九年级化学:“化学相关人物及贡献”质量检测练习题(无答案).docx人教版九年级化学:“化学相关人物及贡献”质量检测练习题(无答案).docx
  • 人教版九年级化学:“化学相关人物及贡献”能力提升检测练习题(无答案).docx人教版九年级化学:“化学相关人物及贡献”能力提升检测练习题(无答案).docx
  • 人教版九年级化学:“化学相关人物及贡献”知识拓展练习题(无答案).docx人教版九年级化学:“化学相关人物及贡献”知识拓展练习题(无答案).docx
  • 人教版九年级化学:“化学相关人物及贡献”知识归纳练习题(无答案).docx人教版九年级化学:“化学相关人物及贡献”知识归纳练习题(无答案).docx
  • 人教版九年级化学:“化学的研究领域和用途”过关练习题(无答案).docx人教版九年级化学:“化学的研究领域和用途”过关练习题(无答案).docx
  • 人教版九年级化学:“化学的研究领域和用途”过关检测题(无答案).docx人教版九年级化学:“化学的研究领域和用途”过关检测题(无答案).docx
  • 人教版九年级化学:“化学的研究领域和用途”练习题(无答案).docx人教版九年级化学:“化学的研究领域和用途”练习题(无答案).docx
  • 人教版九年级化学:“化学的基本知识”应用练习题(无答案).docx人教版九年级化学:“化学的基本知识”应用练习题(无答案).docx
  • 人教版九年级化学:“化学的基本常识”应用达标练习题(无答案).docx人教版九年级化学:“化学的基本常识”应用达标练习题(无答案).docx
  • 人教版九年级化学:“化学性质与物理性质的差别及应用”过关检测练习题(无答案).docx人教版九年级化学:“化学性质与物理性质的差别及应用”过关检测练习题(无答案).docx
  • 人教版九年级化学:“化学性质与物理性质的差别及应用”知识拓展练习题(无答案).docx人教版九年级化学:“化学性质与物理性质的差别及应用”知识拓展练习题(无答案).docx
  • 人教版九年级化学:“化学性质与物理性质的差别及应用”知识归纳练习题(无答案).docx人教版九年级化学:“化学性质与物理性质的差别及应用”知识归纳练习题(无答案).docx
  • 人教版九年级化学:“化学性质与物理性质差别及应用”能力提升练习题(无答案).docx人教版九年级化学:“化学性质与物理性质差别及应用”能力提升练习题(无答案).docx
  • 人教版九年级化学:“几种常见的与化学有关的图标”达标检测练习题(无答案).docx人教版九年级化学:“几种常见的与化学有关的图标”达标检测练习题(无答案).docx
  • 人教版九年级化学:“几种常见的与化学有关的图标”知识拓展练习题(无答案).docx人教版九年级化学:“几种常见的与化学有关的图标”知识拓展练习题(无答案).docx
  • 人教版九年级化学(上)专题化学用语练习题(无答案).docx人教版九年级化学(上)专题化学用语练习题(无答案).docx
  • 人教版九年级化学(上册)说课--氧气的实验室制取与性1.docx人教版九年级化学(上册)说课--氧气的实验室制取与性1.docx
  • 人教版九年级化学(上册)氧气的性质探究实验说课设计.docx人教版九年级化学(上册)氧气的性质探究实验说课设计.docx
  • 人教版九年级化学第四单元课题4《化学式与化合价》.docx人教版九年级化学第四单元课题4《化学式与化合价》.docx
  • 人教版九年级化学第四单元课题3《水的组成》.docx人教版九年级化学第四单元课题3《水的组成》.docx
  • 人教版九年级化学第四单元课题2《水的净化》.docx人教版九年级化学第四单元课题2《水的净化》.docx
  • 人教版九年级化学第四单元课题1《爱护水资源》.docx人教版九年级化学第四单元课题1《爱护水资源》.docx
  • 人教版九年级化学第六单元课题3《二氧化碳和一氧化碳》.docx人教版九年级化学第六单元课题3《二氧化碳和一氧化碳》.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1