分享
分享赚钱 收藏 举报 版权申诉 / 25

类型2022-2023学年度人教版九年级数学上册期中综合复习试题 卷(Ⅰ)(含答案详解).docx

  • 上传人:a****
  • 文档编号:640767
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:25
  • 大小:464.92KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022-2023学年度人教版九年级数学上册期中综合复习试题 卷含答案详解 2022 2023 学年 度人 九年级 数学 上册 期中 综合 复习 试题 答案 详解
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中综合复习试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、若实数满足,则的值是( )A1B-3或1C-3D-1或32、如图,

    2、在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转后得到正方形,依此方式,绕点O连续旋转2019次得到正方形,那么点的坐标是()ABCD3、若关于x的二次函数yax2+bx的图象经过定点(1,1),且当x1时y随x的增大而减小,则a的取值范围是()ABCD4、二次函数yax2+bx+c的部分图象如图所示,由图象可知该抛物线与x轴的交点坐标是()A(1,0)和(5,0)B(1,0)和(5,0)C(0,1)和(0,5)D(0,1)和(0,5)5、在同一坐标系中,二次函数与一次函数的图像可能是()ABCD二、多选题(5小题,每小题4分,共计20分)1、下列图形中,是中心对称图形的是()

    3、线 封 密 内 号学级年名姓 线 封 密 外 ABCD2、如果,是一元二次方程的两个根,那么的值是(),的值是()AB4CD23、已知抛物线y=ax2+bx+c如图所示,则下列结论中不正确的是()Aa0Babc0Cb24ac0D2ab04、下列图案中,是中心对称图形的是()ABCD5、如图是抛物线y1=ax2+bx+c(a0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m0)与抛物线交于A,B两点,下列结论中正确的是( )A2a+b=0Babc0C方程ax2+bx+c=3有两个相等的实数根D抛物线与x轴的另一个交点是(1,0)E当1x4时,有y

    4、2y1第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、北仑梅山所产的草莓柔嫩多汁,芳香味美,深受消费者喜爱有一草莓种植大户,每天草莓的采摘量为300千克,当草莓的零售价为22元/千克时,刚好可以全部售完经调查发现,零售价每上涨1元,每天的销量就减少30千克,而剩余的草莓可由批发商以18元/千克的价格统一收购走,则当草莓零售价为_元时,该种植户一天的销售收入最大2、二次函数的最小值为_3、在平面直角坐标系中,二次函数过点(4,3),若当0xa 时,y 有最大值 7, 最小值 3,则 a 的取值范围是_4、写出一个一元二次方程,使它有两个不相等的实数根_5、一个直角三角形的

    5、两条直角边相差5cm,面积是7cm2,则其斜边的长是 _四、解答题(5小题,每小题8分,共计40分)1、已知抛物线ymx22mx3.(1)若抛物线的顶点的纵坐标是2,求此时m的值;(2)已知当m0时,无论m为其他何值,每一条抛物线都经过坐标系中的两个定点,求出这两个定点的坐标. 线 封 密 内 号学级年名姓 线 封 密 外 2、某种病毒传播非常快,如果1人被感染,经过2轮感染后就会有81人被感染(1)每轮感染中平均1人会感染几人?(2)若病毒得不到有效控制,3轮感染后,被感染的人会不会超过700人?3、某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20

    6、%的损耗,加工费m(万元)与原料的质量x(t)之间的关系为m500.2x,销售价y(万元/t)与原料的质量x(t)之间的关系如图所示(1)求y与x之间的函数关系式;(2)设销售收入为P(万元),求P与x之间的函数关系式;(3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润销售收入总支出)4、如图所示,抛物线与x轴相交于A、B两点,与y轴相交于点C,点M为抛物线的顶点(1)求点C及顶点M的坐标;(2)在抛物线的对称轴上找一点P,使得PA+PC的值最小,请求出点P的坐标并求出最小值;(3)若点N是第四象限内抛物线上的一个动点,连接BN、CN,求面积的最大值及此时点N的

    7、坐标5、判断2、5、-4是不是一元二次方程的根-参考答案-一、单选题1、A【解析】【分析】设x2-3x=y将y代入原方程得到关于y的一元二次方程y2+2y-3=0即可,解这个方程求出y的值,然后利用根的判别式检验即可.【详解】设x2-3x=y将y代入原方程,得y2+2y-3=0,解之得,y=1或y=-3当y=1时,x2-3x=1,=b2-4ac=(-3)2-41(-1)=9+4=130,有两个不相等的实数根,当y=-3时,x2-3x=-3,=b2-4ac=(-3)2-413=9=120,无解故y=1,即x2-3x=1故选A【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了换元法

    8、解一元二次方程及一元二次方程根的判别式,解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.2、A【解析】【分析】根据旋转的性质分别求出点A1、A2、A3、的坐标,继而发现8次为一个循环,用2019除以8,看余数即可求得答案.【详解】四边形OABC是正方形,且,将正方形OABC绕点O逆时针旋转后得到正方形,点A1的横坐标为1,点A1的纵坐标为1,继续旋转则,A4(0,-1),A5,A6(-1,

    9、0),A7,A8(0,1),A9,发现是8次一循环,所以余3,点的坐标为,故选A【考点】本题考查了旋转的性质,规律题点的坐标的变化规律,通过分析正确得出坐标的变化规律是解题的关键.3、D【解析】【分析】根据题意开口向上,且对称轴1,ab1,即可得到1,从而求解【详解】由二次函数yax2+bx可知抛物线过原点,抛物线定点(1,1),且当x-1时,y随x的增大而减小,抛物线开口向上,且对称轴1,ab1,a0,b1a,1,故选:D 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,根据题意得关于a的不等式组是解题的关键4、A【解析】

    10、【分析】首先根据图像得出抛物线的对称轴和其中一个交点坐标,然后根据二次函数的对称性即可求得另一个交点坐标【详解】解:由图像可得,抛物线的对称轴为,与x轴的一个交点坐标为(5,0),抛物线与x轴的两个交点关于对称轴对称,抛物线与x轴的另一个交点坐标为(1,0),故选:A【考点】此题考查了二次函数与x轴的交点,二次函数的对称性,解题的关键是根据二次函数的对称性求出与x轴的另一个交点坐标5、C【解析】【分析】直线与抛物线联立解方程组,若有解,则图象有交点,若无解,则图象无交点;根据二次函数的对称轴在y左侧,a,b同号,对称轴在y轴右侧a,b异号,以及当a大于0时开口向上,当a小于0时开口向下,来分析

    11、二次函数;同时在假定二次函数图象正确的前提下,根据一次函数的一次项系数为正,图象从左向右逐渐上升,一次项系数为负,图象从左向右逐渐下降;一次函数的常数项为正,交y轴于正半轴,常数项为负,交y轴于负半轴如此分析下来,二次函数与一次函数无矛盾者为正确答案【详解】解:由方程组得ax2a,a0x21,该方程无实数根,故二次函数与一次函数图象无交点,排除BA:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;但是一次函数b为一次项系数,图象显示从左向右上升,b0,两者矛盾,故A错;C:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;b为一次函数的一次项系数,图象显示从左向右下降,b0,两者相符

    12、,故C正确;D:二次函数的图象应过原点,此选项不符,故D错故选C【考点】本题考查的是同一坐标系中二次函数与一次函数的图象问题,必须明确二次函数的开口方向与a的正负的关系,a,b的符号与对称轴的位置关系,并结合一次函数的相关性质进行分析,本题中等难度偏上二、多选题 线 封 密 内 号学级年名姓 线 封 密 外 1、BD【解析】【分析】根据中心对称图形的定义旋转180后能够与原图形完全重合即是中心对称图形,进而判断得出答案【详解】解:A此图形旋转180后不能与原图形重合,此图形不是中心对称图形,故此选项不符合题意;B此图形旋转180后能与原图形重合,此图形是中心对称图形,故此选项符合题意;C此图形

    13、旋转180后不能与原图形重合,此图形不是中心对称图形,故此选项不合题意;D此图形旋转180后能与原图形重合,此图形是中心对称图形,故此选项符合题意故选:BD【点睛】本题考查的是中心对称图形的概念,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形2、AB【解析】【分析】根据根与系数的关系得到,再根据一元二次方程的根的定义可得,由此即可得出答案【详解】解:、是一元二次方程的两个根,是一元二次方程的根,故选:AB【点睛】本题考查的是一元二次方程的根与系数的关系以及方程的根的定义,即,是一元二次方程的两根时,熟练掌握一元二次方程根与系数的关系是解决本题

    14、的关键3、ABC【解析】【分析】从抛物线的开口方向可以判断A选项,将代入解析式,结合函数图象可得即可判断B选项,根据抛物线与轴有两个交点可以判断C选项,根据对称轴为,即可判断D选项【详解】如图, 线 封 密 内 号学级年名姓 线 封 密 外 抛物线的开口向上,故A选项不正确,符合题意;由函数图象可知,当时,函数值小于0,即,故B选项不正确,符合题意;由函数图象可知,抛物线与轴有两个不同的交点,即时,有两个不等实根,则;故C选项不正确,符合题意;对称轴为,故D选项正确,不符合题意;故选ABC【点睛】本题考查了二次函数的图象与性质,数形结合是解题的关键4、ABD【解析】【分析】在平面内,把一个图形

    15、绕着某个点旋转180,如果旋转后的图形与另一个图形重合,这个图形就是中心对称图形,根据定义判断即可【详解】、是中心对称图形,选项正确;B、是中心对称图形,选项正确;C、不是中心对称图形,选项错误;D、是中心对称图形,选项正确故选:ABD【点睛】本题考查中心对称图形的定义,牢记定义是解题关键5、ACE【解析】【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系进行判断即可【详解】解:抛物线开口向下,抛物线的对称轴,2a+b=0,故A正确;抛物线与y轴的交点在y轴的正半轴,abc0,当x=-2时,二次函数有最小值-4,故答案为:-4【考点】此题考查将二次函数一般式化为顶点式,函数的

    16、性质,熟练转化函数解析式的形式及掌握确定最值的方法是解题的关键3、2a4【解析】【分析】先求得抛物线的解析式,根据二次函数的性质以及二次函数图象上点的坐标特征即可得到a的取值范围【详解】解:二次函数y=-x2+mx+3过点(4,3),3=-16+4m+3,m=4,y=-x2+4x+3,y=-x2+4x+3=-(x-2)2+7,抛物线开口向下,对称轴是x=2,顶点为(2,7),函数有最大值7,把y=3代入y=-x2+4x+3得3=-x2+4x+3,解得x=0或x=4, 线 封 密 内 号学级年名姓 线 封 密 外 当0xa时,y有最大值7,最小值3,2a4故答案为:2a4【考点】本题考查了待定系

    17、数法求二次函数的解析式,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键4、x2+x10(答案不唯一)【解析】【分析】这是一道开放自主题,只要写出的方程的0就可以了【详解】解:比如a1,b1,c1,b24ac1+450,方程为x2+x10故答案为:x2+x10(答案不唯一)【考点】本题考查了一元二次方程根的判别式,掌握 “根的判别式大于0,方程有两个不相等的实数根”是解题的关键5、cm【解析】【分析】设较短的直角边长是xcm,较长的就是(x+5)cm,根据面积是7cm,求出直角边长,根据勾股定理求出斜边长【详解】解:设这个直角三角形的较短直角边长为xcm,则较长直角边长为(x5)

    18、cm,根据题意,得,所以,解得,因为直角三角形的边长为正数,所以不符合题意,舍去,所以x2,当x2时,x57,由勾股定理,得直角三角形的斜边长为cm故答案为:cm【考点】本题考查了勾股定理,一元二次方程的应用,关键是知道三角形面积公式以及直角三角形中勾股定理的应用四、解答题1、 (1)-1;(2) (0,3)与(2,3).【解析】【分析】(1)根据抛物线的顶点的纵坐标是2,可以求得m的值;(2)根据当m0时,无论m为其他何值,每一条抛物线都经过坐标系中的两个定点,可以求得这两个定点的坐标 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:(1)ymx22mx3m(x1)2m3,抛物线的

    19、顶点的纵坐标是2,m32,解得m1,即m的值是1;(2)当m0时,无论m为其他何值,每一条抛物线都经过坐标系中的两个定点,当m1时,yx22x3;当m2时,y2x24x3,x22x32x24x3.x22x0.x10,x22.这两个定点为(0,3)与(2,3).【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用数形结合的思想和二次函数的性质解答2、 (1)8人(2)会【解析】【分析】(1)设每轮感染中平均一个人会感染x个人,根据一个人被感染经过两轮感染后就会有81个人被感染,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据3轮感染后被感染

    20、的人数=2轮感染后被感染的人数(1+8),即可求出3轮感染后被感染的人数,再将其与700进行比较后即可得出结论(1)设每轮感染中平均1人会感染x人,依题意,得1xx(1x)81,解得x18,x210(不合题意,舍去)答:每轮感染中平均1人会感染8人(2)81(18)729(人),729700答:若病毒得不到有效控制,3轮感染后,被感染的人会超过700人【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键3、(1);(2);(3)原料的质量为24吨时,所获销售利润最大,最大销售利润是万元【解析】【分析】(1)利用待定系数法求函数关系式;(2)根据销售收入销售价销售

    21、量列出函数关系式;(3)设销售总利润为W,根据销售利润销售收入原料成本加工费列出函数关系式,然后根据二次函数的性质分析其最值【详解】解:(1)设y与x之间的函数关系式为,将(20,15),(30,12.5)代入,可得:,解得:, 线 封 密 内 号学级年名姓 线 封 密 外 y与x之间的函数关系式为;(2)设销售收入为P(万元),P与x之间的函数关系式为;(3)设销售总利润为W,整理,可得:,0,当时,W有最大值为,原料的质量为24吨时,所获销售利润最大,最大销售利润是万元【点睛】本题考查了二次函数的实际应用,涉及了数形结合的数学思想,熟练掌握待定系数法求解析式是解决本题的关键4、(1)点的坐

    22、标为,点的坐标为;(2)点P的坐标为(1,4),的最小值为;(3)面积的最大值为,此时点的坐标为【解析】【分析】(1)令抛物线解析式中即可求出点坐标,将抛物线的一般式化为顶点式,即可求出顶点坐标;(2)根据轴对称的性质可得线段BC与对称轴的交点即为点P,先利用待定系数法求出解析式,由此再求出点P坐标即可;(3)过点作轴的垂线交直线于Q点,设,进而得到点坐标,最后根据求解即可【详解】解:(1)将代入,得:,点的坐标为,抛物线的顶点的坐标为;(2)如图,设线段BC与对称轴的交点为点P,连接AC,AP,根据轴对称的性质可得:,两点之间线段最短,此时最小,将代入,得: ,解得:, 线 封 密 内 号学

    23、级年名姓 线 封 密 外 点的坐标为,设直线BC的解析式为,将,代入,得:,解得:,直线BC的解析式为,顶点的坐标为,抛物线的对称轴为直线,将代入,得,点P的坐标为(1,4);故此时的最小值为(3)过点作轴的垂线交直线于点,连接,如图1所示:设点坐标为,则点坐标为,其中,当时,有最大值为,将代入,得:,BCN面积的最大值为,此时点的坐标为【点睛】本题是二次函数综合题目,考查了二次函数的图象和性质、待定系数法求直线的解析式等知识,本题综合性较强,具有一定的难度,熟练掌握二次函数的图形和性质,学会用代数的方法求解几何问题是解决本题的关键5、2,-4是一元二次方程的根,5不是一元二次方程的根.【解析】【分析】分别将2、5、-4代入方程进行验证即可.【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:将x=2代入可得:6=6,故x=2是该一元二次方程的根,将x=5代入可得:303,故x=5不是该一元二次方程的根,将x=-4代入可得:12=12,故x=-4是该一元二次方程的根.【点睛】本题考查一元二次方程解的意义,方程的解即为能使方程左右两边相等的未知数的值.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度人教版九年级数学上册期中综合复习试题 卷(Ⅰ)(含答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-640767.html
    相关资源 更多
  • 人教版化学选修三重点强化教案.docx人教版化学选修三重点强化教案.docx
  • 人教版化学第六单元碳和碳的氧化物专项练习题(有答案).docx人教版化学第六单元碳和碳的氧化物专项练习题(有答案).docx
  • 人教版化学第三单元课题一分子运动实验专题练习(无答案).docx人教版化学第三单元课题一分子运动实验专题练习(无答案).docx
  • 人教版化学第一单元课题3第1课时 化学药品的取用 学案与练习.docx人教版化学第一单元课题3第1课时 化学药品的取用 学案与练习.docx
  • 人教版化学必修一第二章第一节物质的分类导学案.docx人教版化学必修一第二章第一节物质的分类导学案.docx
  • 人教版化学必修一第二章第一节物质的分类导学案.docx人教版化学必修一第二章第一节物质的分类导学案.docx
  • 人教版化学必修一第一章第一节第一节 化学实验基本方法化学实验安全 过滤和蒸发基础知识强化练习无答案.docx人教版化学必修一第一章第一节第一节 化学实验基本方法化学实验安全 过滤和蒸发基础知识强化练习无答案.docx
  • 人教版化学必修一第一章从实验学化学第二课时学案.docx人教版化学必修一第一章从实验学化学第二课时学案.docx
  • 人教版化学必修一同步检测卷(一)化学实验基本方法测试卷扫描版.docx人教版化学必修一同步检测卷(一)化学实验基本方法测试卷扫描版.docx
  • 人教版化学必修1 第一章 从实验学化学  蒸馏和萃取 导学案.docx人教版化学必修1 第一章 从实验学化学  蒸馏和萃取 导学案.docx
  • 人教版化学化学课题1 分子和原子中考常考练习题专练.docx人教版化学化学课题1 分子和原子中考常考练习题专练.docx
  • 人教版化学初三下第十二单元12.2化学元素与人体健康教案.docx人教版化学初三下第十二单元12.2化学元素与人体健康教案.docx
  • 人教版化学初三下第九单元9.1溶液的形成教案.docx人教版化学初三下第九单元9.1溶液的形成教案.docx
  • 人教版化学初三下册:第9单元 课题3 溶质的质量分数(第3课时)学案.docx人教版化学初三下册:第9单元 课题3 溶质的质量分数(第3课时)学案.docx
  • 人教版化学初三下册:第9单元 课题3 溶质的质量分数(第2课时)学案.docx人教版化学初三下册:第9单元 课题3 溶质的质量分数(第2课时)学案.docx
  • 人教版化学初三下册:第9单元 课题2 溶解度(第2课时)学案.docx人教版化学初三下册:第9单元 课题2 溶解度(第2课时)学案.docx
  • 人教版化学初三下册:第8单元 课题3 金属资源的利用和保护(第2课时)学案.docx人教版化学初三下册:第8单元 课题3 金属资源的利用和保护(第2课时)学案.docx
  • 人教版化学初三下册:第8单元 课题2 金属的化学性质(第2课时)学案.docx人教版化学初三下册:第8单元 课题2 金属的化学性质(第2课时)学案.docx
  • 人教版化学初三下册:第11单元 课题2 化学肥料(第2课时)学案.docx人教版化学初三下册:第11单元 课题2 化学肥料(第2课时)学案.docx
  • 人教版化学初三下册:第11单元 课题1 生活中常见的盐(第3课时)学案.docx人教版化学初三下册:第11单元 课题1 生活中常见的盐(第3课时)学案.docx
  • 人教版化学初三下册:第11单元 课题1 生活中常见的盐(第2课时)学案.docx人教版化学初三下册:第11单元 课题1 生活中常见的盐(第2课时)学案.docx
  • 人教版化学初三下册:第10单元 课题2 酸和碱的中和反应(第2课时)学案.docx人教版化学初三下册:第10单元 课题2 酸和碱的中和反应(第2课时)学案.docx
  • 人教版化学初三下册:第10单元 课题1 常见的酸和碱(第1课时)学案.docx人教版化学初三下册:第10单元 课题1 常见的酸和碱(第1课时)学案.docx
  • 人教版化学初三下册教案:第9单元 课题3第2课时 溶液的综合计算.docx人教版化学初三下册教案:第9单元 课题3第2课时 溶液的综合计算.docx
  • 人教版化学初三下册教案:第9单元 课题3第1课时 溶质的质量分数.docx人教版化学初三下册教案:第9单元 课题3第1课时 溶质的质量分数.docx
  • 人教版化学初三下册教案:第9单元 课题2第2课时 溶解度.docx人教版化学初三下册教案:第9单元 课题2第2课时 溶解度.docx
  • 人教版化学初三下册教案:第9单元 课题2第1课时 饱和溶液与不饱和溶液.docx人教版化学初三下册教案:第9单元 课题2第1课时 饱和溶液与不饱和溶液.docx
  • 人教版化学初三下册教案:第9单元 课题1第2课时 溶解时的热量变化及乳化现象.docx人教版化学初三下册教案:第9单元 课题1第2课时 溶解时的热量变化及乳化现象.docx
  • 人教版化学初三下册教案:第9单元 课题1第1课时 溶液.docx人教版化学初三下册教案:第9单元 课题1第1课时 溶液.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1