分享
分享赚钱 收藏 举报 版权申诉 / 33

类型2022-2023学年度人教版九年级数学上册第二十四章圆专题测试试题(详解版).docx

  • 上传人:a****
  • 文档编号:641510
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:33
  • 大小:730.30KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 度人 九年级 数学 上册 第二 十四 专题 测试 试题 详解
    资源描述:

    1、人教版九年级数学上册第二十四章圆专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,矩形纸片中,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作为一个圆锥的底面和侧面,

    2、则圆锥的表面积为()ABCD2、在平面直角坐标系xOy中,已知点A(4,3),以原点O为圆心,5为半径作O,则()A点A在O上B点A在O内C点A在O外D点A与O的位置关系无法确定3、已知点在半径为8的外,则()ABCD4、如图,O是RtABC的外接圆,ACB90,过点C作O的切线,交AB的延长线于点D设A,D,则()AB+90C2+90D+2905、如图,O的半径为5,AB为弦,点C为的中点,若ABC=30,则弦AB的长为()AB5CD56、如图,点A、B、C在O上,且ACB=100o,则度数为()A160oB120oC100oD80o7、如图,、分别切于点、,点为优弧上一点,若,则的度数为(

    3、)ABCD8、已知:如图,AB是O的直径,点P在BA的延长线上,弦CD交AB于E,连接OD、PC、BC,AOD2ABC,PD,过E作弦GFBC交圆与G、F两点,连接CF、BG则下列结论:CDAB;PC是O的切线;ODGF;弦CF的弦心距等于BG则其中正确的是()ABCD9、下列多边形中,内角和最大的是()ABCD10、如图,公园内有一个半径为18米的圆形草坪,从地走到地有观赏路(劣弧)和便民路(线段).已知、是圆上的点,为圆心,小强从走到,走便民路比走观赏路少走()米.ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在O中,CD是直径,弦ABCD,垂足为E

    4、,连接BC,若AB=cm,则圆O的半径为_cm2、如图,在中,以点为圆心、为半径的圆交于点,则弧AD的度数为_度3、如图,中,长为,将绕点A逆时针旋转至,则边扫过区域(图中阴影部分)的面积为_4、如图,AB是O的直径,弦CDAB于点E若AB10,AE1,则弦CD的长是_5、如图,在RtABC中,ACB=90,AC=6,BC=8,点D是AB的中点,以CD为直径作O,O分别与AC,BC交于点E,F,过点F作O的切线FG,交AB于点G,则FG的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,抛物线过点,与y轴交于点C,连接BC,点N是第一象限抛物线上一点,连接NA,

    5、交y轴于点E,(1)求抛物线的解析式;(2)求线段AN的长;(3)若点M在第三象限抛物线上,连接MN,则这时点M的坐标为_(直接写出结果)2、如图,已知MAN,按下列要求补全图形(要求利用没有刻度的直尺和圆规作图,不写作法,保留作图痕迹)在射线AN上取点O,以点O为圆心,以OA为半径作O分别交AM、AN于点C、B;在MAN的内部作射线AD交O于点D,使射线AD上的各点到MAN的两边距离相等,请根据所作图形解答下列问题;(1)连接OD,则OD与AM的位置关系是 ,理论依据是 ;(2)若点E在射线AM上,且DEAM于点E,请判断直线DE与O的位置关系;(3)已知O的直径AB6cm,当弧BD的长度为

    6、 cm时,四边形OACD为菱形3、如图,在中,以为直径的O与相交于点,过点作O的切线交于点(1)求证:;(2)若O的半径为,求的长4、如图,在ABC中,ABAC,BAC与ABC的角平分线相交于点E,AE的延长线交ABC的外接圆于点D,连接BD(1)求证:BADDBC;(2)证明:点B、E、C在以点D为圆心的同一个圆上;(3)若AB5,BC8,求ABC内心与外心之间的距离5、如图,在O中,ACB=60,求证AOB=BOC=COA.-参考答案-一、单选题1、B【解析】【分析】设圆锥的底面的半径为rcm,则DE2rcm,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2r,解方程求

    7、出r,然后求得直径即可【详解】解:设圆锥的底面的半径为rcm,则AE=BF=6-2r根据题意得2 r,解得r1,侧面积= ,底面积=所以圆锥的表面积=,故选:B【考点】本题综合考查有关扇形和圆锥的相关计算解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长正确对这两个关系的记忆是解题的关键2、A【解析】【分析】先求出点A到圆心O的距离,再根据点与圆的位置依据判断可得【详解】解:点A(4,3)到圆心O的距离,OAr5,点A在O上,故选:A【考点】本题考查了对点与圆的位置关系的判断关键要记住若半径为,点到

    8、圆心的距离为,则有:当时,点在圆外;当时,点在圆上,当时,点在圆内,也考查了勾股定理的应用3、A【解析】【分析】根据点P与O的位置关系即可确定OP的范围【详解】解:点P在圆O的外部,点P到圆心O的距离大于8,故选:A【考点】本题主要考查点与圆的位置关系,关键是要牢记判断点与圆的位置关系的方法4、C【解析】【分析】连接OC, 由BOC是AOC的外角,可得BOC2A2,由CD是O的切线,可求OCD90,可得D902即可【详解】连接OC,如图,O是RtABC的外接圆,ACB90,AB是直径,A,OA=OC,BOC是AOC的外角,A=ACO,BOC=A+ACO2A2,CD是O的切线,OCCD,OCD9

    9、0,D90BOC902,2+90故选:C【考点】本题考查圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质,掌握圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质5、D【解析】【分析】连接OC、OA,利用圆周角定理得出AOC=60,再利用垂径定理得出AB即可【详解】连接OC、OA,ABC=30,AOC=60,AB为弦,点C为的中点,OCAB,在RtOAE中,AE=,AB=,故选D【考点】此题考查圆周角定理,关键是利用圆周角定理得出AOC=606、A【解析】【分析】在O取点,连接 利用圆的内接四边形的性质与一条弧所对的圆心角是它所对的圆周角的2倍,可得答案【详解】解:

    10、如图,在O取点,连接 四边形为O的内接四边形, 故选A【考点】本题考查的是圆的内接四边形的性质,同弧所对的圆心角是它所对的圆周角的2倍,掌握相关知识点是解题的关键7、C【解析】【分析】要求ACB的度数,只需根据圆周角定理构造它所对的弧所对的圆心角,即连接OA,OB;再根据切线的性质以及四边形的内角和定理即可求解【详解】解:连接OA,OB,PA、PB分别切O于点A、B,OAAP,OBBP,PAO=PBO=90,AOB+APB=180,AOB=2ACB,ACB=APB,3ACB=180,ACB=60,故选:C【考点】此题考查了切线的性质,圆周角定理,以及四边形的内角和,熟练掌握切线的性质是解本题的

    11、关键8、A【解析】【分析】连接BD、OC、AG、AC,过O作OQCF于Q,OZBG于Z,求出ABC=ABD,从而有弧AC=弧AD,由垂径定理的推论即可判断的正误;由CDPB可得到P+PCD=90,结合P=DCO、等边对等角的知识等量代换可得到PCO=90,据此可判断的正误;假设ODGF成立,则可得到ABC=30,判断由已知条件能否得到ABC的度数即可判断的正误;求出CF=AG,根据垂径定理和三角形中位线的知识可得到CQ=OZ,通过证明OCQBOZ可得到OQ=BZ,结合垂径定理即可判断.【详解】连接BD、OC、AG,过O作OQCF于Q,OZBG于Z,OD=OB,ABD=ODB,AOD=OBD+O

    12、DB=2OBD,AOD=2ABC,ABC=ABD,弧AC=弧AD,AB是直径,CDAB,正确;CDAB,P+PCD=90,OD=OC,OCD=ODC=P,PCD+OCD=90,PCO=90,PC是切线,正确;假设ODGF,则AOD=FEB=2ABC,3ABC=90,ABC=30,已知没有给出B=30,错误;AB是直径,ACB=90,EFBC,ACEF,弧CF=弧AG,AG=CF,OQCF,OZBG,CQ=AG,OZ=AG,BZ=BG,OZ=CQ,OC=OB,OQC=OZB=90,OCQBOZ,OQ=BZ=BG,正确故选A【考点】本题是圆的综合题,考查了垂径定理及其推论,切线的判定,等腰三角形的

    13、性质,平行线的性质,全等三角形的判定与性质.解答本题的关键是熟练掌握圆的有关知识点.9、D【解析】【分析】根据多边形内角和公式可直接进行排除选项【详解】解:A、是一个三角形,其内角和为180;B、是一个四边形,其内角和为360;C、是一个五边形,其内角和为540;D、是一个六边形,其内角和为720;内角和最大的是六边形;故选D【考点】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键10、D【解析】【分析】作OCAB于C,如图,根据垂径定理得到AC=BC,再利用等腰三角形的性质和三角形内角和计算出A,从而得到OC和AC,可得AB,然后利用弧长公式计算出的长,最后求它们的差即可【详解

    14、】解:作OCAB于C,如图,则AC=BC,OA=OB,A=B=(180-AOB)=30,在RtAOC中,OC=OA=9,AC=,AB=2AC=,又=,走便民路比走观赏路少走米,故选D【考点】本题考查了垂径定理:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题二、填空题1、2【解析】【详解】解:如图,连接OB 在O中,CD是直径,弦ABCDAE=BE,且OBE是等腰直角三角形AB=cmBE=cmOB=2 cm故答案为:2【考点】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧也考查了圆周角定理和等腰直角三角形的性质2、【解析】【分析】由三角形内角和得

    15、A=90B=65再由AC=CD,ACD度数可求,可解【详解】连接CDACB=90,B=25,A=90B=65CA=CD,A=CDA=65,ACD=1802A=50,弧AD的度数是50度【考点】本题考查了直角三角形,三角形内角和定理和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半3、【解析】根据已知的条件和旋转的性质得出两个扇形的圆心角的度数,再根据扇形的面积公式进行计算即可得出答案【详解】解:BAC=60,BCA=90,BAC是BAC绕A旋转120得到,BAB=120,BAC=60,BAC=60,BACBAC,CBA=30,CAC=120AB=1cm,A

    16、C=0.5cm,S扇形BAB=,S扇形CAC=,S阴影部分=,故答案为【考点】本题考查圆的综合应用,熟练掌握旋转的性质、直角三角形的性质及扇形面积的求法是解题关键 4、6【解析】【分析】连接OC,根据勾股定理求出CE,根据垂径定理计算即可【详解】连接OC,AB是O的直径,弦CDAB,CD2CE,OEC90,AB10,AE1,OC5,OE514,在RtCOE中,CE3,CD2CE6,故答案为6【考点】本题考查了垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键5、【解析】【分析】先利用勾股定理求出AB=10,进而求出CD=BD=5,再求出CF=4,进而求出DF=

    17、3,再判断出FGBD,利用面积即可得出结论【详解】如图,在RtABC中,根据勾股定理得,AB=10,点D是AB中点,CD=BD=AB=5,连接DF,CD是O的直径,CFD=90,BF=CF=BC=4,DF=3,连接OF,OC=OD,CF=BF,OFAB,OFC=B,FG是O的切线,OFG=90,OFC+BFG=90,BFG+B=90,FGAB,SBDF=DFBF=BDFG,FG=,故答案为.【考点】此题主要考查了直角三角形的性质,勾股定理,切线的性质,三角形的中位线定理,三角形的面积公式,判断出FGAB是解本题的关键三、解答题1、 (1)(2)(3)【解析】【分析】(1)把,代入,待定系数法求

    18、解析式即可;(2)根据解析式求得,证明可得,进而可得,求得直线AN的解析式为,联立抛物线解析式即可求得点的坐标,过点N作轴于点D,勾股定理即可求得线段AN的长;(3)设的外接圆为圆R,圆心R的坐标为,过点R作轴于点G,过点M作的延长线于点H,连接AR,MR,NR证明可得,进而表示出点,将点M的坐标代入抛物线表达式得出式,根据得出式,联立求解即可求得点的坐标(1)把,代入得:,解得,故抛物线的表达式为(2)令,得,设直线AN的解析式为,把,代入得:,解得,故直线AN的解析式为由,解得,故点过点N作轴于点D,则,根据勾股定理得:(3)设的外接圆为圆R,过点R作轴于点G,过点M作的延长线于点H,连接

    19、AR,MR,NR当时,则,设圆心R的坐标为,(AAS),点,将点M的坐标代入抛物线表达式得:,由题意得:,即,联立并解得:,故点【考点】本题考查了二次函数的综合题,待定系数法求解析式,勾股定理,圆周角定理,等腰三角形的性质,全等三角形的性质与判定,第三问中正确的添加辅助线是解题的关键2、(1)平行;内错角相等,两直线平行;(2)相切,理由见解析;(3)【解析】【分析】(1)根据角平分线的定义、圆的性质可得,根据内错角相等,两直线平行即可得证;(2)利用切线的定义即可判定;(3)根据菱形的性质、圆的半径相等可得是等边三角形,利用等边三角形的性质可得,可得,利用弧长公式即可求解【详解】解:补全图形

    20、如下:;(1),根据作图可知AD平分MAN,(内错角相等,两直线平行);(2)相切,理由如下:DEAM,直线DE与O相切;(3)四边形OACD为菱形,是等边三角形, 【考点】本题考查尺规作图、切线的判定与性质、等边三角形的判定与性质、弧长公式等内容,掌握上述基本性质定理是解题的关键3、(1)见详解;(2)4.8【解析】【分析】(1)连接OD,由AB=AC,OB=OD,则B=ODB=C,则ODAC,由DE为切线,即可得到结论成立;(2)连接AD,则有ADBC,得到BD=CD=8,求出AD=6,利用三角形的面积公式,即可求出DE的长度【详解】解:连接OD,如图:AB=AC,B=C,OB=OD,B=

    21、ODB,B=ODB=C,ODAC,DE是切线,ODDE,ACDE;(2)连接AD,如(1)图,AB为直径,AB=AC,AD是等腰三角形ABC的高,也是中线,CD=BD=,ADC=90,AB=AC=,由勾股定理,得:,;【考点】本题主要考查的是切线的性质、等腰三角形的性质、平行线的性质、勾股定理,解题的关键是熟练掌握所学的性质定理,正确的求出边的长度4、 (1)见解析(2)见解析(3)【解析】【分析】(1)根据同弧所对的圆周角相等,可得,再由平分,得,从而证明结论;(2)由,得,再根据,得,从而有,即可证明;(3)由题意知为内心,为外心,设,则,可求出的长,再根据勾股定理求出的长,而,从而得出答

    22、案(1)解:证明:平分,又,;(2)解:证明:,平分,连接,平分,点、在以点为圆心的同一个圆上;(3)解:如图:,在中,在中,设,则,即,解得:,即,为直径,在中,为角平分线的交点,为内心,为内心与外心之间的距离,内心与外心之间的距离为【考点】本题是圆的综合题,主要考查了圆周角定理,三角形的内心和外心的性质,圆的定义,勾股定理等知识,解题的关键是利用(2)中证明结论是解决问题(3)的关键5、详见解析.【解析】【详解】试题分析:根据弧相等,则对应的弦相等从而证明AB=AC,则ABC易证是等边三角形,然后根据同圆中弦相等,则对应的圆心角相等即可证得试题解析:证明:,AB=AC,ABC为等腰三角形(相等的弧所对的弦相等)ACB=60ABC为等边三角形,AB=BC=CAAOB=BOC=COA(相等的弦所对的圆心角相等)

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度人教版九年级数学上册第二十四章圆专题测试试题(详解版).docx
    链接地址:https://www.ketangku.com/wenku/file-641510.html
    相关资源 更多
  • 人教版七年级生物上册教学设计:第一单元 生物和生物圈 第一章 认识生物》第一节 生物的特征.docx人教版七年级生物上册教学设计:第一单元 生物和生物圈 第一章 认识生物》第一节 生物的特征.docx
  • 人教版七年级生物上册导学案:第一单元 生物和生物圈 第一章 认识生物》第一节 生物的特征(无答案).docx人教版七年级生物上册导学案:第一单元 生物和生物圈 第一章 认识生物》第一节 生物的特征(无答案).docx
  • 人教版七年级生物上册同步练习:第二单元 第一章第一节 练习使用显微镜.docx人教版七年级生物上册同步练习:第二单元 第一章第一节 练习使用显微镜.docx
  • 人教版七年级生物上册同步练习:2.1.1练习使用显微镜.docx人教版七年级生物上册同步练习:2.1.1练习使用显微镜.docx
  • 人教版七年级生物上册同步练习:1.2.2生物与环境组成生态系统.docx人教版七年级生物上册同步练习:1.2.2生物与环境组成生态系统.docx
  • 人教版七年级生物上册同步练习1.1.2调查周边环境中的生物.docx人教版七年级生物上册同步练习1.1.2调查周边环境中的生物.docx
  • 人教版七年级生物上册3.5.2绿色植物的呼吸作用练习(含解析).docx人教版七年级生物上册3.5.2绿色植物的呼吸作用练习(含解析).docx
  • 人教版七年级生物上册3.5.2绿色植物的呼吸作用导学案(无答案).docx人教版七年级生物上册3.5.2绿色植物的呼吸作用导学案(无答案).docx
  • 人教版七年级生物上册3.5.1光合作用吸收二氧化碳释放氧气练习(含解析).docx人教版七年级生物上册3.5.1光合作用吸收二氧化碳释放氧气练习(含解析).docx
  • 人教版七年级生物上册3.5.1光合作用吸收二氧化碳释放氧气导学案(无答案).docx人教版七年级生物上册3.5.1光合作用吸收二氧化碳释放氧气导学案(无答案).docx
  • 人教版七年级生物上册3.4绿色植物是生物圈中有机物的制造者练习(含解析).docx人教版七年级生物上册3.4绿色植物是生物圈中有机物的制造者练习(含解析).docx
  • 人教版七年级生物上册3.4绿色植物是生物圈中有机物的制造者导学案(无答案).docx人教版七年级生物上册3.4绿色植物是生物圈中有机物的制造者导学案(无答案).docx
  • 人教版七年级生物上册3.3绿色植物与生物圈的水循环练习(含解析).docx人教版七年级生物上册3.3绿色植物与生物圈的水循环练习(含解析).docx
  • 人教版七年级生物上册3.2.3开花和结果导学案(无答案).docx人教版七年级生物上册3.2.3开花和结果导学案(无答案).docx
  • 人教版七年级生物上册3.2.3 开花和结果练习(含解析)教师用卷.docx人教版七年级生物上册3.2.3 开花和结果练习(含解析)教师用卷.docx
  • 人教版七年级生物上册3.2.2植株的生长导学案(无答案).docx人教版七年级生物上册3.2.2植株的生长导学案(无答案).docx
  • 人教版七年级生物上册3.2.1种子的萌发导学案(无答案).docx人教版七年级生物上册3.2.1种子的萌发导学案(无答案).docx
  • 人教版七年级生物上册3.1.2种子植物练习(含解析)教师用卷.docx人教版七年级生物上册3.1.2种子植物练习(含解析)教师用卷.docx
  • 人教版七年级生物上册3.1.1藻类蕨类苔藓植物同步练习.docx人教版七年级生物上册3.1.1藻类蕨类苔藓植物同步练习.docx
  • 人教版七年级生物上册3.1.1藻类、苔藓和蕨类植物导学案(无答案).docx人教版七年级生物上册3.1.1藻类、苔藓和蕨类植物导学案(无答案).docx
  • 人教版七年级生物上册2.2.3植物体的结构层次导学案(无答案).docx人教版七年级生物上册2.2.3植物体的结构层次导学案(无答案).docx
  • 人教版七年级生物上册2.2.2动物体的结构层次同步练习.docx人教版七年级生物上册2.2.2动物体的结构层次同步练习.docx
  • 人教版七年级生物上册2.1.3第三节 观察动物细胞 教学设计.docx人教版七年级生物上册2.1.3第三节 观察动物细胞 教学设计.docx
  • 人教版七年级生物上册2.1.3 动物细胞练习(含解析)教师用卷.docx人教版七年级生物上册2.1.3 动物细胞练习(含解析)教师用卷.docx
  • 人教版七年级生物上册2.1.1 练习使用显微镜练习(含解析)教师用卷.docx人教版七年级生物上册2.1.1 练习使用显微镜练习(含解析)教师用卷.docx
  • 人教版七年级生物上册1.2.3生物圈是最大的生态系统导学案(无答案).docx人教版七年级生物上册1.2.3生物圈是最大的生态系统导学案(无答案).docx
  • 人教版七年级生物上册1.2.2生物与环境组成生态系统练习(含解析)教师用卷.docx人教版七年级生物上册1.2.2生物与环境组成生态系统练习(含解析)教师用卷.docx
  • 人教版七年级生物上册1.1.1生物的特征练习(含解析)教师用卷.docx人教版七年级生物上册1.1.1生物的特征练习(含解析)教师用卷.docx
  • 人教版七年级生物上册2.1.3第三节 观察动物细胞 教学设计.docx人教版七年级生物上册2.1.3第三节 观察动物细胞 教学设计.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1