分享
分享赚钱 收藏 举报 版权申诉 / 19

类型2022-2023学年度人教版八年级数学上册第十一章三角形章节训练试卷(含答案详解).docx

  • 上传人:a****
  • 文档编号:641663
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:19
  • 大小:247.83KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 度人 八年 级数 上册 第十一 三角形 章节 训练 试卷 答案 详解
    资源描述:

    1、人教版八年级数学上册第十一章三角形章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将一副三角尺按如图所示的方式摆放,则的大小为()ABCD2、长度分别为2,3,3,4的四根细木棒首尾相连,围成一个

    2、三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为()A4B5C6D73、一个三角形的三个内角的度数之比为 1:2:3,这个三角形一定是()A直角三角形B锐角三角形C钝角三角形D无法判定4、三角形的重心是()A三角形三边的高所在直线的交点B三角形的三条中线的交点C三角形的三条内角平分线的交点D三角形三边中垂线的交点5、如图,ABCD,1=45,3=80,则2的度数为()A30B35C40D456、若正多边形的一个外角是,则这个正多边形的内角和是()ABCD7、如图,将沿翻折,三个顶点恰好落在点处若,则的度数为()ABCD8、利用边长相等的正三角形和正六边形地板砖镶嵌地面,在每个顶点

    3、周围有块正三角形和块正六边形地板砖,则的值为()A3或4B4或5C5或6D49、不一定在三角形内部的线段是()A三角形的角平分线B三角形的中线C三角形的高D三角形的高和中线10、如图,AE是ABC的中线,D是BE上一点,若EC6,DE2,则BD的长为()A4B3C2D1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,BE、CE分别为的内、外角平分线,BF、CF分别为的内、外角平分线,若,则_度2、在等腰ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为_3、如图,ABCD,DCE=118,AEC的角平分线EF与GF相交

    4、于点F,BGF=132,则F的度数是_4、若一个正n边形的一个内角与和它相邻的外角的度数之比是3:1,那么n_5、如图,BE、CF是ABC的角平分线,BE、CF相交于点D,若,则CDE的度数为_三、解答题(5小题,每小题10分,共计50分)1、如图,ABC中,AD是高,AE、BF是角平分线,它们相交于点O,CAB50,C60,求DAE和BOA的度数2、已知,满足(1)求、的值(2)试问以、为边能否构成三角形?若能构成三角形,请求出三角形的周长,若不能,请说明理由3、用反证法证明:一个三角形中不能有两个角是直角4、如图,在RtABC中,ACB=90,A=40,ABC的外角CBD的平分线BE交AC

    5、的延长线于点E(1)求CBE的度数;(2)过点D作DFBE,交AC的延长线于点F,求F的度数5、在探索并证明三角形的内角和定理“三角形三个内角的和等于180”时,圆圆同学添加的辅助线为“过点A作直线DE / BC”请写出“已知”、“求证”,并补全证明已知:求证:证明:过点A作直线DE / BC-参考答案-一、单选题1、B【解析】【分析】先根据直角三角板的性质得出ACD的度数,再由三角形内角和定理即可得出结论【详解】解:如图所示,由一副三角板的性质可知:ECD=60,BCA=45,D=90,ACD=ECDBCA=6045=15,=180DACD=1809015=75, 故选:B【考点】本题考查的

    6、是三角形内角和定理,熟知三角形内角和是180是解答此题的关键2、B【解析】【分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.【详解】长度分别为5、3、4,能构成三角形,且最长边为5;长度分别为2、6、4,不能构成三角形;长度分别为2、7、3,不能构成三角形;长度分别为6、3、3,不能构成三角形;综上所述,得到三角形的最长边长为5故选:B.【考点】此题考查构成三角形的条件,三角形的三边关系,解题中运用不同情形进行讨论的方法,注意避免遗漏构成的情况.3、A【解析】【分析】设三个内角分别为x,2x,3x,由三角形内角和180建立方程,求出x,即可判断.【详解】设三个内角分别

    7、为x,2x,3x,则x+2x+3x=180,解得x=30,三个内角分别为30,60,90,这个三角形一定是直角三角形,故选A.【考点】本题考查三角形内角和定理,建立方程求出内角的度数是关键.4、B【解析】【分析】根据重心是三角形三边中线的交点,三角形三条高的交点是垂心,三角形三条角平分线的交点是三角形的内心,等知识点作出判断【详解】解:三角形三条高的交点是垂心,A选项不符合题意;三角形三条边中线的交点是三角形的重心,B选项符合题意;三角形三条内角平分线的交点是三角形的内心,C选项不符合题意;三角形三边中垂线的交点三角形的外心,D选项不符合题意故选:B【考点】本题考查了三角形的重心、内心与外心等

    8、知识,是基础题,熟记概念是解题的关键5、B【解析】【详解】分析:根据平行线的性质和三角形的外角性质解答即可详解:如图,ABCD,1=45,4=1=45,3=80,2=3-4=80-45=35,故选B点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答6、B【解析】【分析】利用多边形外角求得该多边形的边数,再利用多边形内角和公式即可解答【详解】解:多边形外角和为360,故该多边形的边数为36060=6;多边形内角和公式为:(n-2)180=(6-2)180=720故选:B【考点】本题考查了多边形外角和以及多边形内角和公式,熟练掌握相关公式是解题关键7、D【解析】【分析】根据翻

    9、折变换前后对应角不变,故B=EOF,A=DOH,C=HOG,1+2+HOD+EOF+HOG=360,进而求出1+2的度数【详解】解:将ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,B=EOF,A=DOH,C=HOG,1+2+HOD+EOF+HOG=360,HOD+EOF+HOG=A+B+C=180,1+2=360-180=180,1=40,2=140,故选:D【考点】此题主要考查了翻折变换的性质和三角形的内角和定理,根据已知得出HOD+EOF+HOG=A+B+C=180是解题关键8、B【解析】【分析】正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360

    10、若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌【详解】正三边形和正六边形内角分别为60、120,604+120=360,或602+1202=360,a=4,b=1或a=2,b=2,当a=4,b=1时,a+b=5;当a=2,b=2时,a+b=4故选B【考点】解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合9、C【解析】【分析】根据三角形的高、中线、角平分线的性质解答【详解】解:因为在三角形中,它的中线、角平分线一定在三角形的内部,而钝角三角形的两条高在三角形的外部故选:C【考点】本题考查了三角形的高、中线、角平分线熟悉各个性质是解题的关键10、A【解析】

    11、【分析】根据三角形中线定义得BE=EC=6,再由BD=BE-DE求解即可【详解】解:AE是ABC的中线,EC=6,BE=EC=6, DE=2,BD=BEDE=62=4,故选:A【考点】本题考查了三角形的中线,熟知三角形的中线定义是解答的关键二、填空题1、13【解析】【分析】根据BF,CF分别为EBC的内、外角平分线分别设,再根据BE,CE分别为ABC的内,外角平分线,得到和 ,最后根据 和 求出 即可【详解】BF,CF分别为的内、外角平分线,设,又BE,CE分别为的内,外角平分线,又,又,故答案为:13【考点】此题考查了三角形内角和外角角平分线的相关知识,涉及到三角形外角等于与其不相邻的两内角

    12、和的知识,有一定难度2、16或8【解析】【分析】本题由题意可知有两种情况,AB+AD=15或AB+AD=21从而根据等腰三角形的性质及三角形三边关系可求出底边为8或16【详解】解:BD是等腰ABC的中线,可设AD=CD=x,则AB=AC=2x又知BD将三角形周长分为15和21两部分可知分为两种情况AB+AD=15,即3x=15,解得x=5,此时BC=21x=215=16AB+AD=21,即3x=21,解得x=7;此时等腰ABC的三边分别为14,14,8经验证,这两种情况都是成立的这个三角形的底边长为8或16故答案为:16或8【考点】本题主要考查来了等边三角形的性质以及三角形的三边关系(两边之和

    13、大于第三边,两边只差小于第三边),注意求出的结果燕验证三角形的三边关系,掌握分类讨论思想是解题的关键3、11【解析】【详解】分析:本题考查的是平行线的内错角相等,角平分线的性质和三角形外角的性质.解析:AB/CD,DCE=118,AEC=118, AEC的角平分线EF与GF相交线于点F, AEF=FEC=59, BGF=132, F=11.故答案为11.4、8【解析】【分析】设和它相邻的外角的度数为x,则这个内角为3x,根据题意列出方程,即可求解【详解】解:设和它相邻的外角的度数为x,则这个内角为3x,根据题意得:,解得:,故答案为:8【考点】本题主要考查了正多边形的内角和与外角和问题,利用方

    14、程思想解答是解题的关键5、60;【解析】【分析】根据三角形内角和,可得ABC+ACB的度数,再由角平分线的性质,可得DCB+DBC的度数,根据外角性质得出CDE的度数【详解】解:,ABC+ACB=;BE、CF是ABC和ACB的角平分线,,;由外角性质可得:故答案为:【考点】本题主要考查角平分线性质、三角形的内角和与外角和性质,熟练掌握角度之间的大小关系与转化是解题的关键三、解答题1、DAE5,BOA120【解析】【分析】由CAB50,C60可求出ABC;由AE、BF是角平分线,得到CBFABF35,EAFEAB25;由AD是高,得到DAC;从而计算得到DAE和BOA【详解】CAB50,C60A

    15、BC180506070AE、BF是角平分线CBFABF35,EAFEAB25又AD是高ADC90DAC18090C30DAEDACEAF5又ABF35,EAB25BOA180-EAB-ABF180-25-35120DAE5,BOA120【考点】本题考查了三角形角平分线、直角三角形的知识;求解的关键是熟练掌握三角形以及直角三角形的性质,从而完成求解2、(1),;(2)能,【解析】【分析】(1)根据非负数的性质可求出a、b、c的值;(2)根据三角形三边关系,再把三角形三边相加即可求解【详解】解:(1)由题意得:,解得:,(2)根据三角形的三边关系可知,、能构成三角形此时三角形的周长为【考点】本题考

    16、查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根)当它们相加和为0时,必须满足其中的每一项都等于0根据这个结论可以求解这类题目3、见解析【解析】【分析】假设三角形的三个内角中有两个(或三个)直角,不妨设,则,这与三角形内角和为相矛盾,不成立,由此即可证明【详解】证明:假设三角形的三个内角中有两个(或三个)直角,不妨设,则,这与三角形内角和为相矛盾,不成立,所以一个三角形中不能有两个直角【考点】本题主要考查了反证法,解题的关键在于能够熟练掌握反证法的步骤4、 (1) 65;(2) 25【解析】【分析】(1)先根据直角三角形两锐角互余求出ABC=

    17、90A=50,由邻补角定义得出CBD=130再根据角平分线定义即可求出CBE=CBD=65;(2)先根据直角三角形两锐角互余的性质得出CEB=9065=25,再根据平行线的性质即可求出F=CEB=25【详解】(1)在RtABC中,ACB=90,A=40,ABC=90A=50,CBD=130BE是CBD的平分线,CBE=CBD=65;(2)ACB=90,CBE=65,CEB=9065=25DFBE,F=CEB=25【考点】本题考查了三角形内角和定理,直角三角形两锐角互余的性质,平行线的性质,邻补角定义,角平分线定义掌握各定义与性质是解题的关键5、已知:如图,;求证:;证明见解析【解析】【分析】根据平行线的性质和平角的定义即可证明【详解】已知:如图,求证:证明:如图,过点A作直线DE / BCDE / BC,(两直线平行,内错角相等) (平角定义),即三角形内角和为【考点】本题考查三角形内角和定理的证明,平行线的性质,平角的定义掌握两直线平行,内错角相等是解题关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度人教版八年级数学上册第十一章三角形章节训练试卷(含答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-641663.html
    相关资源 更多
  • 【节日教案】幼儿园大班体育活动教案参考模板(三篇大全).docx【节日教案】幼儿园大班体育活动教案参考模板(三篇大全).docx
  • 【节日教案】幼儿园大班体育活动教学教案(三篇大全).docx【节日教案】幼儿园大班体育活动教学教案(三篇大全).docx
  • 【节日教案】幼儿园大班体育活动教学教案精选大全.docx【节日教案】幼儿园大班体育活动教学教案精选大全.docx
  • 【节日教案】幼儿园大班体育活动教学教案模板(大全).docx【节日教案】幼儿园大班体育活动教学教案模板(大全).docx
  • 【节日教案】幼儿园大班体育活动教学教案模板.docx【节日教案】幼儿园大班体育活动教学教案模板.docx
  • 【节日教案】幼儿园体育活动教案模板(三篇合集).docx【节日教案】幼儿园体育活动教案模板(三篇合集).docx
  • 【节日教案】幼儿园体育活动教案模板三篇.docx【节日教案】幼儿园体育活动教案模板三篇.docx
  • 【节日教案】幼儿园体育活动教案三篇合辑.docx【节日教案】幼儿园体育活动教案三篇合辑.docx
  • 【节日教案】幼儿园中班音乐主题教案精选.docx【节日教案】幼儿园中班音乐主题教案精选.docx
  • 【节日教案】幼儿园中班音乐主题教案模板(精选大全).docx【节日教案】幼儿园中班音乐主题教案模板(精选大全).docx
  • 【节日教案】幼儿园中班音乐主题教案模板(精选三篇).docx【节日教案】幼儿园中班音乐主题教案模板(精选三篇).docx
  • 【节日教案】幼儿园中班音乐主题教案模板(大全).docx【节日教案】幼儿园中班音乐主题教案模板(大全).docx
  • 【节日教案】幼儿园中班音乐主题教案模板(三篇).docx【节日教案】幼儿园中班音乐主题教案模板(三篇).docx
  • 【节日教案】幼儿园中班音乐主题教案模板三篇合集.docx【节日教案】幼儿园中班音乐主题教案模板三篇合集.docx
  • 【节日教案】幼儿园中班音乐主题教案参考模板精选.docx【节日教案】幼儿园中班音乐主题教案参考模板精选.docx
  • 【节日教案】幼儿园中班音乐主题教案三篇大全.docx【节日教案】幼儿园中班音乐主题教案三篇大全.docx
  • 【节日教案】幼儿园中班音乐主题教案三篇.docx【节日教案】幼儿园中班音乐主题教案三篇.docx
  • 【节日教案】幼儿园中班音乐主题教案.docx【节日教案】幼儿园中班音乐主题教案.docx
  • 【节日教案】幼儿园中班防火安全教育教案模板(精选大全).docx【节日教案】幼儿园中班防火安全教育教案模板(精选大全).docx
  • 【节日教案】幼儿园中班防火安全教育教案模板(精选三篇).docx【节日教案】幼儿园中班防火安全教育教案模板(精选三篇).docx
  • 【节日教案】幼儿园中班防火安全教育教案模板(三篇合辑).docx【节日教案】幼儿园中班防火安全教育教案模板(三篇合辑).docx
  • 【节日教案】幼儿园中班防火安全教育教案模板精选大全.docx【节日教案】幼儿园中班防火安全教育教案模板精选大全.docx
  • 【节日教案】幼儿园中班防火安全教育教案模板三篇大全.docx【节日教案】幼儿园中班防火安全教育教案模板三篇大全.docx
  • 【节日教案】幼儿园中班防火安全教育教案参考(精选大全).docx【节日教案】幼儿园中班防火安全教育教案参考(精选大全).docx
  • 【节日教案】幼儿园中班防火安全教育教案参考(三篇大全).docx【节日教案】幼儿园中班防火安全教育教案参考(三篇大全).docx
  • 【节日教案】幼儿园中班防火安全教育教案参考(三篇合辑).docx【节日教案】幼儿园中班防火安全教育教案参考(三篇合辑).docx
  • 【节日教案】幼儿园中班防火安全教育教案参考汇编.docx【节日教案】幼儿园中班防火安全教育教案参考汇编.docx
  • 【节日教案】幼儿园中班防火安全教育教案参考模板(精选三篇).docx【节日教案】幼儿园中班防火安全教育教案参考模板(精选三篇).docx
  • 【节日教案】幼儿园中班防火安全教育教案参考模板(三篇合辑).docx【节日教案】幼儿园中班防火安全教育教案参考模板(三篇合辑).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1