分享
分享赚钱 收藏 举报 版权申诉 / 25

类型2022年强化训练人教版九年级数学上册期末专项测试试题 B卷(含答案详解).docx

  • 上传人:a****
  • 文档编号:702136
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:25
  • 大小:529.67KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年强化训练人教版九年级数学上册期末专项测试试题 B卷含答案详解 2022 强化 训练 人教版 九年级 数学 上册 期末 专项 测试 试题 答案 详解
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末专项测试试题 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同当水面刚好

    2、淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A4米B5米C2米D7米2、用配方法解方程时,原方程应变形为()ABCD3、已知抛物线P:,将抛物线P绕原点旋转180得到抛物线,当时,在抛物线上任取一点M,设点M的纵坐标为t,若,则a的取值范围是()ABCD4、如图1,矩形中,点为的中点,点沿从点运动到点,设,两点间的距离为,图2是点运动时随变化的关系图象,则的长为()ABCD5、已知关于x的方程有一个根为1,则方程的另一个根为()A-1B1C2D-2二、多选题(5小题,每小题

    3、4分,共计20分)1、如图在四边形中,为的中点,以点为圆心、长为半径作圆,恰好使得点在圆上,连接,若,则下列说法中正确的是()A是劣弧的中点B是圆的切线CD2、下面一元二次方程的解法中,不正确的是()A(x-3)(x-5)=102,x-3=10,x-5=2,x1=13,x2=7B(2-5x)+(5x-2)2=0,(5x-2)(5x-3)=0,x1=,x2=C(x+2)2+4x=0,x1=2,x2=-2Dx2=x两边同除以x,得x=1 线 封 密 内 号学级年名姓 线 封 密 外 3、观察如图推理过程,错误的是()A因为的度数为,所以B因为,所以C因为垂直平分,所以D因为,所以4、在图所示的4个

    4、图案中不包含图形的旋转的是()ABCD5、二次函数y=ax2+bx+c的部分对应值如下表:以下结论正确的是()x320135y708957A抛物线的顶点坐标为(1,9);B与y轴的交点坐标为(0,8);C与x轴的交点坐标为(2,0)和(2,0);D当x=1时,对应的函数值y为5第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、关于的方程有两个不相等的实数根,则的取值范围是_2、如图,是等边三角形,点D为BC边上一点,以点D为顶点作正方形DEFG,且,连接AE,AG若将正方形DEFG绕点D旋转一周,当AE取最小值时,AG的长为_3、如图,在一块长12m,宽8m的矩形空地上,

    5、修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m,设道路的宽为x m,则根据题意,可列方程为_.4、如图,在一块长为22m,宽为14m的矩形空地内修建三条宽度相等的小路(阴影部分),其余部分种植花草若花草的种植面积为240m2,则小路的宽为_m5、如图,二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),它的对称轴为直线x=1,则下列结论中:c=3;2a+b=0;8a-b+c0;方程ax2+bx+c=0的其中一个根在2,3之间,正确的有_(填序号) 线 封 密 内 号学级年名姓 线 封 密 外 四、解答题(5小题,每小题8分,共

    6、计40分)1、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价为1元,日销售量将减少10千克,现该商场要保证每天盈利8000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?2、解关于y的方程:by21y2+23、如图,抛物线ya(x2)2+3(a为常数且a0)与y轴交于点A(0,)(1)求该抛物线的解析式;(2)若直线ykx(k0)与抛物线有两个交点,交点的横坐标分别为x1,x2,当x12+x2210时,求k的值;(3)当4xm时,y有最大值,求m的值4、解一元二次方程(1) (2) 5、解下列方程(1)x22x

    7、0;(2)2x23x10-参考答案-一、单选题1、B【解析】【分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=10代入可求解【详解】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=,设大孔所在抛物线解析式为y=ax2+, 线 封 密 内 号学级年名姓 线 封 密 外 BC=10,点B(5,0),0=a(5)2+,a=-,大孔所在抛物线解析式为y=-x2+,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(xb)2,EF=14,点E的横坐标为-7,点E坐标为(-7,-),

    8、-=m(xb)2,x1=+b,x2=-+b,MN=4,|+b-(-+b)|=4m=-,顶点为A的小孔所在抛物线的解析式为y=-(xb)2,大孔水面宽度为20米,当x=-10时,y=-,-=-(xb)2,x1=+b,x2=-+b,单个小孔的水面宽度=|(+b)-(-+b)|=5(米),故选:B【考点】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答2、D【解析】【分析】移项,配方,变形后即可得出选项【详解】解:x2-4x=1,x2-4x+4=1+4,(x-2)2=5,故选:D【考点】本题考查了解一元二次方程,能够正确配方是解此题的关键3、A【解析】【分析】

    9、先求出抛物线的解析式,再列出不等式,求出其解集或,从而可得当x=1时,有成立,最后求出a的取值范围 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:抛物线P:,将抛物线P绕原点旋转180得到抛物线,抛物线P与抛物线关于原点对称,设点(x,y)在抛物线P上,则点(-x,-y)一定在抛物线P上,抛物线的解析式为,当时,在抛物线上任取一点M,设点M的纵坐标为t,若,即令,解得:或,设,开口向下,且与x轴的两个交点为(0,0),(4a,0),即当时,要恒成立,此时,当x=1时,即可,得:,解得:,又故选A【考点】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数

    10、,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数的性质4、C【解析】【分析】先利用图2得出当P点位于B点时和当P点位于E点时的情况,得到AB和BE之间的关系以及,再利用勾股定理求解即可得到BE的值,最后利用中点定义得到BC的值【详解】解:由图2可知,当P点位于B点时,即,当P点位于E点时,即,则,,即,点为的中点,,故选:C【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了学生对函数图象的理解与应用,涉及到了勾股定理、解一元二次方程、中点的定义等内容,解决本题的关键是能正确理解题意,能从图象中提取相关信息,能利用勾股定理建立方程等,本题蕴含了数形结合的思

    11、想方法5、C【解析】【分析】根据根与系数的关系列出关于另一根t的方程,解方程即可【详解】解:设关于x的方程的另一个根为xt,1t3,解得,t2故选:C【考点】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2bxc0(a0)的两根时,x1x2,x1x2二、多选题1、ABC【解析】【分析】直接利用圆周角定理以及结合圆心角、弧、弦的关系、切线的判定方法、平行线的判定方法、四边形内角和分别分析得出答案【详解】解:A.BAD=25,EAD=25,DAB=EAD,故此选项正确;B.BAD=25,OA=OD,ADO=BAD=25ADC=115,ODC=ADC-ADC=115-25=90,CD是O的

    12、切线,故此选项正确;CEAD=ADO=25AEDO,故此选项正确;D,OBC=360-DAB-ADC-C=360-25-115-90=130,故此选项错误故选择ABC【考点】此题主要考查了切线的判定以及圆周角与弧的关系、四边形内角和、平行线的判定方法等知识,正确掌握相关判定方法是解题关键2、ACD【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 各方程求出解,即可作出判断【详解】解:A、方程整理得:x2-8x-5=0,这里a=1,b=-8,c=-5,=64+20=84,故选项A符合题意;B、提取公因式得:(2-5x)(1+2-5x)=0,解得:x1=,x2=,故选项B不符合题意;

    13、C、方程整理得:x2+8x+4=0,解得:,故选项C符合题意;D、方程整理得:x2-x=0,即x(x-1)=0,解得:x1=0,x2=1,故选项D符合题意,故选:ACD【考点】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键3、ABC【解析】【分析】A.根据定理“圆心角的度数等于它所对的弧的度数。”可得.B.根据定理“同圆或等圆中,相等的圆心角所对的弧相等。”可得.C.根据“垂径定理”及弦的定义可得.D.根据“在同圆或等圆中,若两个圆心角、两条弧、两条弦、两条弦的弦心距中得到的四组量中有一组量相等,则对应的其余各组量也相等。”可得.【详解】由定理“圆心角的度数等于它所

    14、对的弧的度数。”A. 的度数是 ,故选项A错误.B.由定理“同圆中相等的圆心角所对的弧相等。”,B选项题干中不是同一个圆,故选项B错误.C.由“垂径定理:垂直于弦(非直径)的直径平分这条弦,并且平分弦所对的两条弧。 没有过圆心,不是直径,并且,根据弦的定义,不是圆O的弦,因此无法判断 ,故选项C错误.D. 即 由定理“在同圆或等圆中,若两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,则对应的其余各组量也相等。”所以,故选项D正确.【考点】本题旨在考查圆,圆心角,所对应的圆弧及弦的相关定义及性质定理,熟练掌握圆的相关定理是解题的关键.4、AC【解析】【分析】根据中心对称与轴对称的概念,

    15、即可求解【详解】解:A、是轴对称图形,故本选项符合题意; 线 封 密 内 号学级年名姓 线 封 密 外 B、是中心对称图形,属于图形的旋转,故本选项不符合题意;C、是轴对称图形,故本选项符合题意;D、既是轴对称图形,也是中心对称图形,包含图形的旋转,故本选项不符合题意;故选:AC【考点】本题主要考查了中心对称与轴对称的概念,熟练掌握轴对称图形的关键是寻找对称轴,图象沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合是解题的关键5、ABD【解析】【分析】由已知二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值可知:x=-3与x=5时,都是y=7,由抛物线的对

    16、称性可知:抛物线的对称轴为直线x=,根据对称轴和图表可得到顶点坐标,抛物线与y轴的交点坐标,抛物线与x轴的另一个交点坐标以及x=1时,对应的函数值,判断即可【详解】由已知二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值可知:x=-3与x=5时,都是y=7,由抛物线的对称性可知:抛物线的对称轴为直线x=,抛物线的顶点坐标为(1,-9),A正确,符合题意;由图表可知抛物线与y轴的交点坐标为(0,8),B正确,符合题意;抛物线过点(-2,0),根据抛物线的对称性可知:抛物线与x轴的另一个交点坐标为 (4,0),C错误,不符合题意;由抛物线的对称性可知:当x=-1时,对应的函数值与x=3时

    17、相同,对应的函数值y=-5,D正确,符合题意,故答案为:ABD【考点】此题主要考查了二次函数的性质,解题的关键是熟练掌握抛物线的图象和性质,同时会根据图象得到信息三、填空题1、且【解析】【分析】若一元二次方程有两个不相等的实数根,则=b2-4ac0,建立关于k的不等式,求得k的取值范围,还要使二次项系数不为0【详解】方程有两个不相等的实数根, 解得:,又二次项系数故答案为且【考点】考查一元二次方程根的判别式, 线 封 密 内 号学级年名姓 线 封 密 外 当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.2、8【解析】【分析】过点A作于M,由已知得出,得出,由

    18、等边三角形的性质得出,得出,在中,由勾股定理得出,当正方形DEFG绕点D旋转到点E、A、D在同一条直线上时,即此时AE取最小值,在中,由勾股定理得出,在中,由勾股定理即可得出【详解】过点A作于M,是等边三角形,在中,当正方形DEFG绕点D旋转到点E、A、D在同一条直线上时,即此时AE取最小值,在中,在中,;故答案为8【考点】本题考查了旋转的性质、正方形的性质、等边三角形的性质、勾股定理以及最小值问题;熟练掌握正方形的性质和等边三角形的性质是解题的关键3、(12-x)(8-x)=77【解析】【分析】道路外的四块土地拼到一起正好构成一个矩形,矩形的长和宽分别是(12-x)和(8-x),根据矩形的面

    19、积公式,列出关于道路宽的方程求解【详解】道路的宽为x米依题意得:(12-x)(8-x)=77,故答案为(12-x)(8-x)=77. 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了一元二次方程的应用,关键将四个矩形用恰当的方式拼成大矩形列出等量关系4、2【解析】【分析】设小路宽为xm,则种植花草部分的面积等同于长(22-x)m,宽(14-x)m的矩形的面积,根据花草的种植面积为240m2,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论【详解】解:设小路宽为xm,则种植花草部分的面积等同于长(22-x)m,宽(14-x)m的矩形的面积,依题意得:(22-x)(1

    20、4-x)=240,整理得:x2-36x+68=0,解得:x1=2,x2=34(不合题意,舍去)故答案为:2【考点】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键5、【解析】【分析】由二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),即可判断;由抛物线的对称轴为直线x=1,即可判断;抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,即可判断,由抛物线开口向下,得到a0,再由当x=-1时,即可判断【详解】解:二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),c=3,故正确;抛物线的对称轴为直线x=1,即,故正确;抛物线与x轴的

    21、一个交点在-1到0之间,抛物线对称轴为直线x=1,抛物线与x轴的另一个交点在2到3之间,故正确;抛物线开口向下,a0,当x=-1时,即,故错误,故答案为:【考点】本题主要考查了二次函数图像的性质,解题的关键在于能够熟练掌握二次函数图像的性质四、解答题1、每千克应涨价10元【解析】【分析】设每千克应涨价x元,根据每千克涨价1元,日销售量将减少10千克,每天盈利8000元,列出方程,求解即可【详解】解:设每千克应涨价x元,由题意得:,解得, 线 封 密 内 号学级年名姓 线 封 密 外 要使顾客得到实惠,应取x=10,答:每千克应涨价10元【考点】本题考查了一元二次方程的应用,解题关键是要读懂题目

    22、的意思,根据题目给出的条件,找出合适的等量关系2、当b1时,原方程的解为y;当b1时,原方程无实数解【解析】【分析】把b看做常数根据解方程的步骤:先移项,再合并同类项,系数化为1,即可得出答案【详解】解:移项得:by2y22+1,合并同类项得:(b1)y23,当b1时,原方程无解;当b1时,原方程的解为y;当b1时,原方程无实数解【考点】此题主要考查一元二次方程的求解,解题的关键是根据题意分类讨论3、(1);(2);(3)【解析】【分析】(1)把代入抛物线的解析式,解方程求解即可; (2)联立两个函数的解析式,消去 得:再利用根与系数的关系与可得关于的方程,解方程可得答案;(3)先求解抛物线的

    23、对称轴方程,分三种情况讨论,当 结合函数图象,利用函数的最大值列方程,再解方程即可得到答案.【详解】解:(1)把代入中, 抛物线的解析式为: (2)联立一次函数与抛物线的解析式得: 整理得: x1+x2=4-3k,x1x2=-3, 线 封 密 内 号学级年名姓 线 封 密 外 x12+x22=(4-3k)2+6=10,解得: (3)函数的对称轴为直线x=2,当m2时,当x=m时,y有最大值,=-(m-2)2+3,解得m=,m=-,当m2时,当x=2时,y有最大值,=3,m=,综上所述,m的值为-或【考点】本题考查的是利用待定系数法求解抛物线的解析式,抛物线与轴的交点坐标,一元二次方程根与系数的

    24、关系,二次函数的增减性,掌握数形结合的方法与分类讨论是解题的关键.4、(1)x1=2,x2=-2;(2)x1=4,x2=-2【解析】【分析】(1)先把方程变形为x2=4,然后利用直接开平方法解方程;(2)先把方程化为一般式,然后利用因式分解法解方程【详解】解:(1)x2=4,x=2,x1=2,x2=-2;(2)方程整理为x2-2x-8=0(x-4)(x+2)=0,x-4=0或x+2=0,x1=4,x2=-2【考点】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法也考查了直接开平方法解方程5、 (1)x12,x20(2)x1,x2【解析】【分析】(1)采用因式分解法即可求解;(2)直接用公式法即可求解(1)原方程左边因式分解,得:,即有:x12,x20;(2), 线 封 密 内 号学级年名姓 线 封 密 外 ,【考点】本题考查了用因式分解法和公式法解一元二次方程的知识,掌握求根公式是解答本题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年强化训练人教版九年级数学上册期末专项测试试题 B卷(含答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-702136.html
    相关资源 更多
  • 人教版七年级下册生物4.7.3《拟定保护生态环境的计划》【教案】.docx人教版七年级下册生物4.7.3《拟定保护生态环境的计划》【教案】.docx
  • 人教版七年级下册期末课堂检测题 B卷练习题 word版本.docx人教版七年级下册期末课堂检测题 B卷练习题 word版本.docx
  • 人教版七年级下册期中考试专题--单项选择(无答案).docx人教版七年级下册期中考试专题--单项选择(无答案).docx
  • 人教版七年级下册数学第十章单元检测试卷(图片版附答案).docx人教版七年级下册数学第十章单元检测试卷(图片版附答案).docx
  • 人教版七年级下册数学第六章实数检测试卷(图片版附答案).docx人教版七年级下册数学第六章实数检测试卷(图片版附答案).docx
  • 人教版七年级下册数学第六章《实数》单元测试(扫描版无答案).docx人教版七年级下册数学第六章《实数》单元测试(扫描版无答案).docx
  • 人教版七年级下册数学第八章单元检测试卷(图片版).docx人教版七年级下册数学第八章单元检测试卷(图片版).docx
  • 人教版七年级下册数学第八章单元检测试卷(图片版).docx人教版七年级下册数学第八章单元检测试卷(图片版).docx
  • 人教版七年级下册数学第五章课后练习:5.2.2 平行线的判定.docx人教版七年级下册数学第五章课后练习:5.2.2 平行线的判定.docx
  • 人教版七年级下册数学第九章单元检测试卷(图片版附答案).docx人教版七年级下册数学第九章单元检测试卷(图片版附答案).docx
  • 人教版七年级下册数学第七章单元检测试卷(图片版附答案).docx人教版七年级下册数学第七章单元检测试卷(图片版附答案).docx
  • 人教版七年级下册数学第七章单元检测试卷(图片版附答案).docx人教版七年级下册数学第七章单元检测试卷(图片版附答案).docx
  • 人教版七年级下册数学第5章课后练习:5.4 平移.docx人教版七年级下册数学第5章课后练习:5.4 平移.docx
  • 人教版七年级下册数学第5章课后练习:5.3.2 命题、定理、证明.docx人教版七年级下册数学第5章课后练习:5.3.2 命题、定理、证明.docx
  • 人教版七年级下册数学第5章课后练习:5.3.1 平行线的性质.docx人教版七年级下册数学第5章课后练习:5.3.1 平行线的性质.docx
  • 人教版七年级下册数学期末复习--实数(图片版附答案).docx人教版七年级下册数学期末复习--实数(图片版附答案).docx
  • 人教版七年级下册数学教案:9.1.2不等式的性质.docx人教版七年级下册数学教案:9.1.2不等式的性质.docx
  • 人教版七年级下册数学教案9.3 一元一次不等式组.docx人教版七年级下册数学教案9.3 一元一次不等式组.docx
  • 人教版七年级下册数学教案8.3实际问题与二元一次方程组(第4课时).docx人教版七年级下册数学教案8.3实际问题与二元一次方程组(第4课时).docx
  • 人教版七年级下册数学教案 9.3一元一次不等式组和它的解法 (1).docx人教版七年级下册数学教案 9.3一元一次不等式组和它的解法 (1).docx
  • 人教版七年级下册数学学案10 (2)无答案.docx人教版七年级下册数学学案10 (2)无答案.docx
  • 人教版七年级下册数学学案10 (1)无答案.docx人教版七年级下册数学学案10 (1)无答案.docx
  • 人教版七年级下册数学 5.4平移 教案.docx人教版七年级下册数学 5.4平移 教案.docx
  • 人教版七年级下册平行线的判定教案.docx人教版七年级下册平行线的判定教案.docx
  • 人教版七年级下册小题之完形填空专项练习(无答案).docx人教版七年级下册小题之完形填空专项练习(无答案).docx
  • 人教版七年级下册小题之任务型阅读试题集锦及答案.docx人教版七年级下册小题之任务型阅读试题集锦及答案.docx
  • 人教版七年级下册地理教案:8.3《撒哈拉以南非洲》.docx人教版七年级下册地理教案:8.3《撒哈拉以南非洲》.docx
  • 人教版七年级下册地理教案:8.2《欧洲西部》.docx人教版七年级下册地理教案:8.2《欧洲西部》.docx
  • 人教版七年级下册地理教案:8.1《中东》.docx人教版七年级下册地理教案:8.1《中东》.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1