分享
分享赚钱 收藏 举报 版权申诉 / 13

类型2023届新高考数学专题复习 专题07 函数的零点问题(教师版).docx

  • 上传人:a****
  • 文档编号:752271
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:13
  • 大小:396.78KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2023届新高考数学专题复习 专题07 函数的零点问题教师版 2023 新高 数学 专题 复习 07 函数 零点 问题 教师版
    资源描述:

    1、专题07 函数的零点问题一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。例1、(2019苏州三市、苏北四市二调)定义在R上的奇函数f(x)满足f(x4)f(x),且在区间2,4)上则函数的零点的个数为【答案】: 5【解析】:因为f(x4)f(x),可得f(x)是周期为4的奇函数,先画出函数f(x)在区间2,4)上的图像,根据奇函数和周期为4,可以画出f(x)在R上的图像,由y

    2、f(x)log5| x|0,得f(x)log5| x|,分别画出yf(x)和ylog5|x|的图像,如下图,由f(5)f(1)1,而log551,f(3)f(1)1,log5|3|1,可以得到两个图像有5个交点,所以零点的个数为5. 本题考查了函数的零点问题,以及函数的奇偶性和周期性,考查了转化与化归、数形结合的思想,函数的零数问题,常转化为函数的图像的交点个数来处理,其中能根据函数的性质作出函数的图像并能灵活地运用图像,找到临界点是解题的关键也是难点例2、(2017苏锡常镇调研)若函数f(x)则函数y|f(x)|的零点个数为_【答案】:. 4【解析】设g(x),则由g(x)0,可得x,所以g

    3、(x)在(1,)上单调递增,在(,)上单调递减,当x时,g(x)0,故g(x)在(1,)上的最大值为g().在同一平面直角坐标系中画出y|f(x)|与y的图像可得,交点有4个,即原函数零点有4个例3、【2018年高考全国卷理数】函数在的零点个数为_【答案】【解析】,由题可知或,解得或,故有3个零点.本题主要考查三角函数的性质和函数的零点,属于基础题.解题时,首先求出的范围,再由函数值为零,得到的取值可得零点个数.题型二、函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围(2) 分离参

    4、数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解例4、(2020届山东省枣庄、滕州市高三上期末)已知若函数恰有一个零点,则实数k的取值范围是( )ABCD【答案】B【解析】时,所以函数在时有一个零点,从而在时无零点,即无解而当时,它是减函数,值域为,要使无解则故选:B.例5、(2020全国高三专题练习(文)函数,若方程有且只有两个不相等的实数根,则实数的取值范围是 ( )A

    5、BCD【答案】A【解析】令,画出与的图象,平移直线,当直线经过时只有一个交点,此时,向右平移,不再符合条件,故故选:A例6、【2020年高考天津】已知函数若函数恰有4个零点,则的取值范围是ABCD【答案】D【解析】注意到,所以要使恰有4个零点,只需方程恰有3个实根即可,令,即与的图象有个不同交点.因为,当时,此时,如图1,与有个不同交点,不满足题意;当时,如图2,此时与恒有个不同交点,满足题意;当时,如图3,当与相切时,联立方程得,令得,解得(负值舍去),所以.综上,的取值范围为.故选:D例7、【2019年高考浙江】已知,函数若函数恰有3个零点,则Aa1,b0 Ba0Ca1,b1,b0【答案】

    6、C【解析】当x0时,yf(x)axbxaxb(1a)xb0,得x=b1-a,则yf(x)axb最多有一个零点;当x0时,yf(x)axb=13x3-12(a+1)x2+axaxb=13x3-12(a+1)x2b,当a+10,即a1时,y0,yf(x)axb在0,+)上单调递增,则yf(x)axb最多有一个零点,不合题意;当a+10,即a1时,令y0得x(a+1,+),此时函数单调递增,令y0得x0,a+1),此时函数单调递减,则函数最多有2个零点.根据题意,函数yf(x)axb恰有3个零点函数yf(x)axb在(,0)上有一个零点,在0,+)上有2个零点,如图:b1-a0且,解得b0,1a0,

    7、b-16(a+1)3,则a1,b0.故选C本题考查函数与方程,导数的应用.当x0时,yf(x)axbxaxb(1a)xb最多有一个零点;当x0时,yf(x)axb=13x3-12(a+1)x2b,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解例8、(2020浙江学军中学高三3月月考)已知函数,若函数有9个零点,则实数k的取值范围是( )ABCD【答案】A【解析】由题意,函数有9个零点,可转化为与有9个不同交点.因当有,所以在上是周期函数,又当时,有,所以在上的图象如图所示要使与有9个不同交点,则只需夹在与之间即可,所以,解得或.故选:A.例9、(2020届浙江

    8、省杭州市第二中学高三3月月考)已知函数,若函数在上只有两个零点,则实数的值不可能为ABCD【答案】A【解析】函数的零点为函数与图象的交点,在同一直角坐标下作出函数与的图象,如图所示,当函数的图象经过点(2,0)时满足条件,此时 ,当函数的图象经过点(4,0)时满足条件,此时 ,当函数的图象与相切时也满足题意,此时 ,解得, 综上所述,或或二、达标训练1、(2019山东师范大学附中高三月考)函数的零点所在区间为( )ABCD【答案】C【解析】,由.故选:C2、【2018年高考全国卷理数】已知函数若g(x)存在2个零点,则a的取值范围是A1,0) B0,+) C1,+) D1,+)【答案】C【解析

    9、】画出函数的图象,在y轴右侧的图象去掉,再画出直线,之后上下移动,可以发现当直线过点(0,1)时,直线与函数图象有两个交点,并且向下可以无限移动,都可以保证直线与函数的图象有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即.故选C3、(2020届浙江省“山水联盟”高三下学期开学)已知,函数,若函数恰有3个零点,则( )ABCD【答案】B【解析】令,则条件等价为方程有3个实数根当时,对A选项分析:当,时,在,图象如图所示:此时方程最多只有1个实数根,所以A选项错误对B选项分析:当,时,在,图象如图所示:故方程可能会出现3个实数根,所以B选项正确对C选项分析:当,时,在,图象如图所示:

    10、此时方程最多只有2个实数根,所以C选项错误对D选项分析:当,时,在,图象如图所示:此时方程最多只有2个实数根,所以D选项错误故选:.4、(2020届山东实验中学高三上期中)设定义在上的函数满足,且当时,.己知存在,且为函数(为自然对数的底数)的一个零点,则实数的取值可能是( )ABCD【答案】BCD【解析】令函数,因为,为奇函数,当时,在上单调递减,在上单调递减存在,得,即,;,为函数的一个零点;当时,函数在时单调递减,由选项知,取,又,要使在时有一个零点,只需使,解得,的取值范围为, 故选:5、(2020届山东师范大学附中高三月考)已知函数,若方程有三个不同的实根,则实数a的取值范围是_【答

    11、案】【解析】函数的图象如下图所示,作出直线l:,平移直线l至与之间时,方程有三个不同的实根,而由得,当时,即(舍去)时,得直线,当直线l:,过点时,得直线,此时,所以要使方程有三个不同的实根,则实数a的取值范围是:,故答案为:.6、【2018年高考浙江】已知R,函数f(x)=,当=2时,不等式f(x)0的解集是_若函数f(x)恰有2个零点,则的取值范围是_【答案】(1,4);【解析】由题意得或,所以或,即,故不等式f(x)0的解集是当时,此时,即在上有两个零点;当时,由在上只能有一个零点得.综上,的取值范围为.7、【2020届江苏省南通市如皋市高三下学期二模】已知函数,若存在实数,使得函数有6个零点,则实数的取值范围为_.【答案】【解析】由题得函数的图象和直线有六个交点.显然有.,(),所以函数在单调递减,在单调递增,且.由题得,三点的高度应满足或,所以或,因为所以或,综合得.故答案为:.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2023届新高考数学专题复习 专题07 函数的零点问题(教师版).docx
    链接地址:https://www.ketangku.com/wenku/file-752271.html
    相关资源 更多
  • 八年级下册(全)-2022年中考道德与法治必备知识清单(思维导图 核心知识 考点梳理)(部编版).docx八年级下册(全)-2022年中考道德与法治必备知识清单(思维导图 核心知识 考点梳理)(部编版).docx
  • 八年级下册(人教版)物理同步练习卷:8.2 二力平衡.docx八年级下册(人教版)物理同步练习卷:8.2 二力平衡.docx
  • 八年级下册(人教版)物理单元提升卷:第八章 运动和力.docx八年级下册(人教版)物理单元提升卷:第八章 运动和力.docx
  • 八年级下册道德与法治全册知识点.docx八年级下册道德与法治全册知识点.docx
  • 八年级下册课内文言文《核舟记》对比阅读(5篇 含答案).docx八年级下册课内文言文《核舟记》对比阅读(5篇 含答案).docx
  • 八年级下册课内文言文《核舟记》对比阅读(5篇 含答案).docx八年级下册课内文言文《核舟记》对比阅读(5篇 含答案).docx
  • 八年级下册英语复习Unit15(无答案).docx八年级下册英语复习Unit15(无答案).docx
  • 八年级下册英语任务型阅读专题训练(无答案).docx八年级下册英语任务型阅读专题训练(无答案).docx
  • 八年级下册英语Unit3SectionB重要考点.docx八年级下册英语Unit3SectionB重要考点.docx
  • 八年级下册第五章测试卷(B卷).docx八年级下册第五章测试卷(B卷).docx
  • 八年级下册第五章测试卷(A卷).docx八年级下册第五章测试卷(A卷).docx
  • 八年级下册第一单元 第二节第一课时《充满活力的经济制度》课件(湘师版八年级下).docx八年级下册第一单元 第二节第一课时《充满活力的经济制度》课件(湘师版八年级下).docx
  • 八年级下册电功率课件.docx八年级下册电功率课件.docx
  • 八年级下册生物第八单元第三章章末卷.docx八年级下册生物第八单元第三章章末卷.docx
  • 八年级下册生物第八单元第一章章末卷.docx八年级下册生物第八单元第一章章末卷.docx
  • 八年级下册生物第七单元第二章2卷.docx八年级下册生物第七单元第二章2卷.docx
  • 八年级下册物理走进分子世界 (共5份打包).docx八年级下册物理走进分子世界 (共5份打包).docx
  • 八年级下册物理10.1浮力助学案(无答案).docx八年级下册物理10.1浮力助学案(无答案).docx
  • 八年级下册期末试卷不含答案.docx八年级下册期末试卷不含答案.docx
  • 八年级下册复习提纲(填空版).docx八年级下册复习提纲(填空版).docx
  • 八年级下册基础知识及热点速查宝典.docx八年级下册基础知识及热点速查宝典.docx
  • 八年级下册地理:8.2 干旱的宝地——塔里木盆地教案.docx八年级下册地理:8.2 干旱的宝地——塔里木盆地教案.docx
  • 八年级下册地理:8.2 干旱的宝地——塔里木盆地教案.docx八年级下册地理:8.2 干旱的宝地——塔里木盆地教案.docx
  • 八年级下册同步练习23.马说.docx八年级下册同步练习23.马说.docx
  • 八年级下册同步练习18.在长江源头各拉丹冬.docx八年级下册同步练习18.在长江源头各拉丹冬.docx
  • 八年级下册同步练习13.最后一次讲演.docx八年级下册同步练习13.最后一次讲演.docx
  • 八年级下册化学教案-《探究燃烧的条件》|鲁教版(五四).docx八年级下册化学教案-《探究燃烧的条件》|鲁教版(五四).docx
  • 八年级下册人教部编版课外古诗词诵读陆游《卜算子·咏梅》(共39张PPT).docx八年级下册人教部编版课外古诗词诵读陆游《卜算子·咏梅》(共39张PPT).docx
  • 八年级下册人教部编版课外古诗词诵读陆游《卜算子.docx八年级下册人教部编版课外古诗词诵读陆游《卜算子.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1