2023年新教材高考数学 微专题专练33(含解析).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023年新教材高考数学 微专题专练33含解析 2023 新教材 高考 数学 专题 33 解析
- 资源描述:
-
1、专练33高考大题专练(三)数列的综合运用12022全国甲卷(理),17记Sn为数列an的前n项和已知n2an1.(1)证明:an是等差数列;(2)若a4,a7,a9成等比数列,求Sn的最小值22020全国卷设数列an满足a13,an13an4n.(1)计算a2,a3,猜想an的通项公式并加以证明;(2)求数列2nan的前n项和Sn.3.2021全国新高考卷已知数列an满足a11,an1(1)记bna2n,写出b1,b2,并求数列bn的通项公式;(2)求an的前20项和42022新高考卷,17记Sn为数列的前n项和,已知a11,是公差为的等差数列(1)求的通项公式;(2)证明:2.5.2020全
2、国卷设an是公比不为1的等比数列,a1为a2,a3的等差中项(1)求an的公比;(2)若a11,求数列nan的前n项和62021全国乙卷记Sn为数列an的前n项和,bn为数列Sn的前n项积,已知2.(1)证明:数列bn是等差数列;(2)求an的通项公式72021全国甲卷已知数列an的各项均为正数,记Sn为an的前n项和,从下面中选取两个作为条件,证明另外一个成立数列an是等差数列;数列是等差数列;a23a1.注:若选择不同的组合分别解答,则按第一个解答计分82021全国乙卷,文设an是首项为1的等比数列,数列bn满足bn.已知a1,3a2,9a3成等差数列(1)求an和bn的通项公式;(2)记Sn和Tn分别为an和bn的前n项和证明:Tn0,则d,得a1d2,所以(n1)dnd,所以Snn2d2,所以anSnSn1n2d2(n1)2d22d2nd2(n2),是关于n的一次函数,所以数列an是等差数列8解析:(1)设an的公比为q,则anqn1.因为a1,3a2,9a3成等差数列,所以19q223q,解得q,故an,bn.(2)由(1)知Sn(1),Tn,Tn,得Tn,即Tn(1),整理得Tn,则2TnSn2()(1)0,故Tn.
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
