分享
分享赚钱 收藏 举报 版权申诉 / 18

类型2023版高中数学新同步精讲精炼(选择性必修第一册) 3.2.2 双曲线的简单几何性质(精练)(教师版含解析).docx

  • 上传人:a****
  • 文档编号:764563
  • 上传时间:2025-12-14
  • 格式:DOCX
  • 页数:18
  • 大小:1.05MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2023版高中数学新同步精讲精炼选择性必修第一册 3.2.2 双曲线的简单几何性质精练教师版含解析 2023 高中数学 同步 精炼 选择性 必修 一册 3.2 双曲线 简单 几何 性质 精练
    资源描述:

    1、3.2.2 双曲线的简单几何性质(精练)【题组一 双曲线的离心率或渐近线】1(2021全国高二单元测试)已知双曲线的离心率是,则( )ABCD【答案】D【解析】因为双曲线的离心率是,所以,解得(舍去).故选:D.2(多选)(2021河北张家口)已知双曲线C:,下列对双曲线C判断正确的是()A实轴长是虚轴长的2倍B焦距为4C离心率为D渐近线方程为【答案】BD【解析】双曲线C:.双曲线的实轴长是,虚轴长是,A错误;焦距为.B正确;离心率为,C错误:渐近线方程为,D正确.故选:BD3(多选)(2021重庆市合川实验中学高二开学考试)下列双曲线中,渐近线方程为的是( )ABCD【答案】AC【解析】对A

    2、,令,故A正确;对B,令,故B错误;对C,令,故C正确;对D,令,故D错误;故选:AC4(2021全国高二课时练习)(多选)已知,分别是双曲线的左、右焦点,点在双曲线上,且,则下列结论正确的是( )A若,则双曲线离心率的取值范围为B若,则双曲线离心率的取值范围为C若,则双曲线离心率的取值范围为D若,则双曲线离心率的取值范围为【答案】BC【解析】由题意,分别是双曲线的左、右焦点,点在双曲线上,且,若,可得,根据双曲线的定义可得,则,解得;若,可得,根据双曲线的定义可得,则,解得故选:BC5(多选)(2021河北沧州市一中)若三个数1,9成等比数列,则圆锥曲线的离心率可以是( )ABCD【答案】A

    3、D【解析】因为三个数1,9成等比数列,所以,解得,当时,曲线的离心率为:,当时,曲线的离心率为:故选:AD6(2021全国高二课时练习)设双曲线的半焦距为,直线过,两点已知原点到直线的距离为,则双曲线的离心率为( )A2BCD【答案】A【解析】因为直线过,两点所以直线的方程为,即,所以原点到的距离又,所以,即,故,解得或当时,与矛盾,所以故选:A7(2021全国高二单元测试)若双曲线的离心率,则( )A3B12C18D27【答案】D【解析】 由已知双曲线得,所以,解得,故选:D8(2021全国高二单元测试)已知点是双曲线的左焦点,点是该双曲线的右顶点,过且垂直于轴的直线与双曲线交于,两点,若是

    4、锐角三角形,则该双曲线的离心率的取值范围是( )ABCD【答案】B【解析】若是锐角三角形,则只需在中,则,又,又,故选:B9(2021全国高二课时练习)已知,是双曲线上不同的三点,且点A,连线经过坐标原点,若直线,的斜率乘积为,则该双曲线的离心率为( )ABCD【答案】D【解析】设,因为点A,连线经过坐标原点,根据双曲线的对称性,则,所以因为点A,在双曲线上,所以,两式相减,得,所以,所以故选:D.10(2021全国高二课时练习)在平面直角坐标系中,双曲线的中心在坐标原点,焦点在轴上,一条渐近线的方程为,则它的离心率为( )ABCD2【答案】A【解析】因为一条渐近线的斜率为,即,所以故选:A1

    5、1(2021全国)已知点,分别是双曲线的左、右焦点,为坐标原点,点在双曲线的右支上,且满足,则双曲线的离心率的取值范围为( )ABCD【答案】A【解析】由得,根据三角形的性质可知,为直角三角形,且,由双曲线的定义可得,又,可得所以可化为,即,而,解得,又,故选:A12(2021浙江省淳安县汾口中学)已知分别为双曲线的左右焦点,是双曲线上的一点且满足,则此双曲线离心率的取值范围( )ABCD【答案】C【解析】设,即,可得,即,即,又即,又,即,所以,即,即,可得,即,故选:13(2021浙江省淳安县汾口中学)已知点分别是双曲线的左右焦点,过且垂直于轴的直线与双曲线交于两点,若为等边三角形,则该双

    6、曲线的离心率是( )AB或C2D3【答案】A【解析】根据题意可设,将代入,解得,则,所以,因为为等边三角形,则,即,又,所以,即,则,解得或,又因为双曲线的离心率,所以双曲线的离心率.故选:A.【题组二 直线与双曲线的位置关系】1(2021全国)若直线ykx与双曲线4x2y216相交,则实数k的取值范围为( )A(2,2)B2,2)C(2,2D2,2【答案】A【解析】因为直线ykx与双曲线4x2y216相交,则,将ykx代入4x2y216得关于x的一元二次方程(4k2)x2160,由,解得2k2.故选:A.2(2021上海市复兴高级中学高二期中)若曲线与曲线恰有两个不同的交点,则实数的取值范围

    7、是( )ABCD【答案】C【解析】如图示:表示起点为的两条斜率分别为1和-1的射线.当曲线为椭圆时,即,只需点落在椭圆内,即,解得:;当曲线为双曲线时,即,渐近线方程:要使曲线与曲线恰有两个不同的交点,只需,解得:.所以实数的取值范围是故选:C3(2021安徽高二期末(理)直线l过点(2,1),且与双曲线有且只有一个公共点,则这样的不同直线的条数为( )A1B2C3D4【答案】B【解析】直线l的斜率存在时,设l的方程为:,由得,时,不成立,方程组无解,时,解得,方程组有唯一解,即直线l与双曲线有唯一公共点,时,即直线l的斜率存在时,符合条件的直线只有一条,当直线l的斜率不存在时,直线l:x=2

    8、,代入双曲线方程得y=0,即直线l与双曲线也有唯一公共点,所以符合条件的直线有2条.故选:B【题组三 弦长】1(2021全国高二课时练习)求双曲线被直线截得的弦长_【解析】联立方程组,整理得,设直线与双曲线交于两点,设,则,由弦长公式可得.故答案为:.2(2021广西高二期末(理)过双曲线:的右焦点作圆:的切线,此切线与的右支交于,两点,则_.【答案】【解析】因为直线过双曲线的右焦点且与圆相切,所以直线的斜率存在,设直线方程为(),由直线与圆相切知,解得或,当时,双曲线的一条渐近线的斜率是,该直线不与双曲线右支相交于两点,故舍去;所以直线方程为,联立双曲线方程,消元得.设,则,所以.故答案为:

    9、3(2021全国高二课时练习)过双曲线的左焦点F1,作倾斜角为的直线l与双曲线的交点为A、B,则|AB|_.【答案】3【解析】双曲线焦点坐标为F1(2,0)、F2(2,0),直线AB的方程为y (x2)把该直线方程代入双曲线方程得,8x24x130设A(x1,y1),B(x2,y2)所以x1x2,x1x2|AB|3故答案为:34(2021鸡东县第二中学高二期末(文)已知点,动点满足条件记动点的轨迹为(1)求的方程;(2)过曲线的一个焦点作倾斜角为45的直线与曲线交于,两点,求【答案】(1);(2)【解析】(1)因为,所以点的轨迹是以为焦点,实轴长为的双曲线,所以,所以,所以的方程为:;(2)不

    10、妨设焦点,则直线:由消去得:设,则,所以【题组四 点差法】1(2021全国高二课时练习)设双曲线上有两点,中点,则直线的方程为_【答案】【解析】设,则,则 ,两式相减得,所以直线的方程为即,代入满足,所以直线的方程为.故答案为:.2(2021福建省南安市侨光中学高二月考)已知双曲线上存在两点关于直线对称,且的中点在抛物线上,则实数的值为_【答案】0或【解析】设,的中点为,则,由点差法可得,即,显然,又因为,代入可得;由两点关于直线对称,可得,所以,又因为,所以,代入抛物线方程得,解得或故答案为:0或3(2021吉林长春外国语学校高二开学考试)过双曲线的左焦点的直线与双曲线交两点,且线段的中点坐

    11、标为,则双曲线方程是_.【答案】【解析】设,则,两式相减可得:,所以,因为点是线段的中点,所以,所以,因为,所以,即,因为,所以,所以双曲线方程是,故答案为:.4(2021福建龙岩高二期末)过点的直线与双曲线交于两点,且点恰好是线段的中点,则直线的方程为_.【答案】【解析】过点的直线与该双曲线交于,两点,设,两式相减可得:,因为为的中点,则,所以直线的方程为,即为故答案为:5(2021全国高二课时练习)双曲线的右焦点分别为F,圆M的方程为.若直线l与圆M相切于点,与双曲线C交于A,B两点,点P恰好为AB的中点,则双曲线C的方程为_.【答案】【解析】设直线l的斜率为k,则,所以,因为点在圆上,即

    12、,设点,则,.两式相减,得则,即,所以双曲线C的方程为.故答案为:6(2021全国高二单元测试)过点作直线与双曲线交于,两点,若点恰为线段的中点,则实数的取值范围是_.【答案】【解析】因为双曲线方程为则设,因为点恰为线段的中点则则,两式相减并化简可得 即直线的斜率为2所以直线的方程为 ,化简可得因为直线与双曲线有两个不同的交点所以解得且所以的取值范围为故答案为: 【题组五 最值问题】1(2021辽宁抚顺)设为坐标原点,直线与双曲线的两条渐近线分别交于,两点.若的焦距为4,则面积的最大值为_.【答案】2【解析】不妨设在第一象限,在第四象限,联立方程组,解得故,同理可得,所以.因为的焦距为4,所以

    13、,解得,当且仅当时取等号,所以的最大值为2.故答案为:2.2(2021陕西高二期末(文)若双曲线与圆没有公共点,求实数k的取值范围为_【答案】【解析】双曲线焦点在轴上,所以,可得长半轴长 ,由可知圆心为,半径为1,若双曲线与圆没有公共点,则,即,所以或,所以实数k的取值范为,故答案为:3(2021上海高二专题练习)已知点,点是双曲线上的点,点是点关于原点的对称点,则的取值范围是_.【答案】【解析】设点,则点,所以,因为是双曲线上的点,故,所以,故的取值范围是.故答案为:4(2021上海高二专题练习)已知A、B分别为双曲线的左、右顶点,点P在第一象限内的双曲线上,记PA、PB、PO的斜率分别为、

    14、,则的取值范围为_.【答案】【解析】设点由题可知:所以又,所以所以,由双曲线的渐近线方程为且在第一象限所以,所以故答案为:5(2021全国高二课时练习)已知曲线,点为曲线上任意一点,若点,则面积的最大值为_【答案】【解析】曲线C是由、以及三部分构成(如图所示),且过AB的直线方程为,并且直线为双曲线和的渐近线,设过点P且与直线平行的直线方程为,由图知,当直线与曲线相切时,切点到直线距离最大,联立消去得,解得(正根舍),所以,所以点到直线的最大距离即为直线与直线之间的距离,所以最大距离,所以面积的最大值为故答案为:6(2021上海高二专题练习)平面上一台机器人在运行中始终保持到点的距离比到点的距离大2,若机器人接触不到过点且斜率为的直线,则的取值范围是_.【答案】【解析】由题意可得机器人的运动轨迹是双曲线的一支,由可得,所以机器人的运动轨迹方程为;直线,即,联立得,当时,若,则此时直线恰好是双曲线的渐近线,符合题意;若,显然不符合题意.当时,由得,解得;综上可得的取值范围是.故答案为:.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2023版高中数学新同步精讲精炼(选择性必修第一册) 3.2.2 双曲线的简单几何性质(精练)(教师版含解析).docx
    链接地址:https://www.ketangku.com/wenku/file-764563.html
    相关资源 更多
  • 八年级道德与法治上册期末测评2新人教版.docx八年级道德与法治上册期末测评2新人教版.docx
  • 八年级道德与法治上册期末测评1新人教版.docx八年级道德与法治上册期末测评1新人教版.docx
  • 八年级道德与法治上册复习提纲(知识点总汇).docx八年级道德与法治上册复习提纲(知识点总汇).docx
  • 八年级道德与法治上册 第四单元 维护国家利益 第十课 建设美好祖国试题 新人教版.docx八年级道德与法治上册 第四单元 维护国家利益 第十课 建设美好祖国试题 新人教版.docx
  • 八年级道德与法治上册 第四单元 维护国家利益 第十课 建设美好祖国练习题 新人教版.docx八年级道德与法治上册 第四单元 维护国家利益 第十课 建设美好祖国练习题 新人教版.docx
  • 八年级道德与法治上册 第四单元 维护国家利益 第十课 建设美好祖国测试 新人教版.docx八年级道德与法治上册 第四单元 维护国家利益 第十课 建设美好祖国测试 新人教版.docx
  • 八年级道德与法治上册 第四单元 维护国家利益 第十课 建设美好祖国巩固练习 新人教版.docx八年级道德与法治上册 第四单元 维护国家利益 第十课 建设美好祖国巩固练习 新人教版.docx
  • 八年级道德与法治上册 第四单元 维护国家利益 第十课 建设美好祖国习题2 新人教版.docx八年级道德与法治上册 第四单元 维护国家利益 第十课 建设美好祖国习题2 新人教版.docx
  • 八年级道德与法治上册 第四单元 维护国家利益 第十课 建设美好祖国习题 新人教版.docx八年级道德与法治上册 第四单元 维护国家利益 第十课 建设美好祖国习题 新人教版.docx
  • 八年级道德与法治上册 第四单元 维护国家利益 第八课 国家利益至上课后巩固练习 新人教版.docx八年级道德与法治上册 第四单元 维护国家利益 第八课 国家利益至上课后巩固练习 新人教版.docx
  • 八年级道德与法治上册 第四单元 维护国家利益 第八课 国家利益至上巩固练习 新人教版.docx八年级道德与法治上册 第四单元 维护国家利益 第八课 国家利益至上巩固练习 新人教版.docx
  • 八年级道德与法治上册 第四单元 维护国家利益 第九课 树立总体国家安全观试题 新人教版.docx八年级道德与法治上册 第四单元 维护国家利益 第九课 树立总体国家安全观试题 新人教版.docx
  • 八年级道德与法治上册 第四单元 维护国家利益 第九课 树立总体国家安全观练习题 新人教版.docx八年级道德与法治上册 第四单元 维护国家利益 第九课 树立总体国家安全观练习题 新人教版.docx
  • 八年级道德与法治上册 第四单元 维护国家利益 第九课 树立总体国家安全观巩固练习 新人教版.docx八年级道德与法治上册 第四单元 维护国家利益 第九课 树立总体国家安全观巩固练习 新人教版.docx
  • 八年级道德与法治上册 第四单元 维护国家利益 第九课 树立总体国家安全观习题2 新人教版.docx八年级道德与法治上册 第四单元 维护国家利益 第九课 树立总体国家安全观习题2 新人教版.docx
  • 八年级道德与法治上册 第四单元 维护国家利益 第九课 树立总体国家安全观习题1 新人教版.docx八年级道德与法治上册 第四单元 维护国家利益 第九课 树立总体国家安全观习题1 新人教版.docx
  • 八年级道德与法治上册 第二单元 遵守社会规则 第四课 社会生活讲道德课时练3 新人教版.docx八年级道德与法治上册 第二单元 遵守社会规则 第四课 社会生活讲道德课时练3 新人教版.docx
  • 八年级道德与法治上册 第二单元 遵守社会规则 第四课 社会生活讲道德课时练2 新人教版.docx八年级道德与法治上册 第二单元 遵守社会规则 第四课 社会生活讲道德课时练2 新人教版.docx
  • 八年级道德与法治上册 第二单元 遵守社会规则 第四课 社会生活讲道德课时作业 新人教版.docx八年级道德与法治上册 第二单元 遵守社会规则 第四课 社会生活讲道德课时作业 新人教版.docx
  • 八年级道德与法治上册 第二单元 遵守社会规则 第四课 社会生活讲道德巩固练习 新人教版.docx八年级道德与法治上册 第二单元 遵守社会规则 第四课 社会生活讲道德巩固练习 新人教版.docx
  • 八年级道德与法治上册 第二单元 遵守社会规则 第五课 做守法的公民课堂练习2 新人教版.docx八年级道德与法治上册 第二单元 遵守社会规则 第五课 做守法的公民课堂练习2 新人教版.docx
  • 八年级道德与法治上册 第二单元 遵守社会规则 第五课 做守法的公民课堂练习1 新人教版.docx八年级道德与法治上册 第二单元 遵守社会规则 第五课 做守法的公民课堂练习1 新人教版.docx
  • 八年级道德与法治上册 第二单元 遵守社会规则 第五课 做守法的公民课后作业1 新人教版.docx八年级道德与法治上册 第二单元 遵守社会规则 第五课 做守法的公民课后作业1 新人教版.docx
  • 八年级道德与法治上册 第二单元 遵守社会规则 第五课 做守法的公民巩固练习 新人教版 (2).docx八年级道德与法治上册 第二单元 遵守社会规则 第五课 做守法的公民巩固练习 新人教版 (2).docx
  • 八年级道德与法治上册 第二单元 遵守社会规则 第三课 社会生活离不开规则课时练1 新人教版.docx八年级道德与法治上册 第二单元 遵守社会规则 第三课 社会生活离不开规则课时练1 新人教版.docx
  • 八年级道德与法治上册 第二单元 遵守社会规则 第三课 社会生活离不开规则课时练 新人教版.docx八年级道德与法治上册 第二单元 遵守社会规则 第三课 社会生活离不开规则课时练 新人教版.docx
  • 八年级道德与法治上册 第二单元 遵守社会规则 第三课 社会生活离不开规则课时作业 新人教版.docx八年级道德与法治上册 第二单元 遵守社会规则 第三课 社会生活离不开规则课时作业 新人教版.docx
  • 八年级道德与法治上册 第二单元 遵守社会规则 第三课 社会生活离不开规则习题1 新人教版.docx八年级道德与法治上册 第二单元 遵守社会规则 第三课 社会生活离不开规则习题1 新人教版.docx
  • 八年级道德与法治上册 第三单元 勇担社会责任 第六课 责任与角色同在课堂作业2 新人教版.docx八年级道德与法治上册 第三单元 勇担社会责任 第六课 责任与角色同在课堂作业2 新人教版.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1