分享
分享赚钱 收藏 举报 版权申诉 / 39

类型21.8 期末复习之选填压轴题专项训练(人教版)(教师版).docx

  • 上传人:a****
  • 文档编号:769470
  • 上传时间:2025-12-14
  • 格式:DOCX
  • 页数:39
  • 大小:688.25KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    21.8 期末复习之选填压轴题专项训练人教版教师版 期末 复习 压轴 专项 训练 人教版 教师版
    资源描述:

    1、专题21.8 期末复习之选填压轴题专项训练【人教版】考点1二次根式选填期末真题压轴题1(2022春广东广州八年级广州市第九十七中学校考期末)如图,在矩形ABCD中无重叠放入面积分别为16cm2和12 cm2的两张正方形纸片,则图中空白部分的面积为()A(8-43)cm2B(4-23)cm2C(16-83)cm2D(83-12)cm2【答案】D【分析】根据正方形的面积求出两个正方形的边长,从而求出AB,BC,再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解【详解】解:两张正方形纸片的面积分别为16cm2和12cm2,它们的边长分别为16=4cm,12=23cm,AB=4c

    2、m,BC=23+4cm,空白部分的面积=(23+4)4-12-16=83+16-12-16=-12+83cm2故选:D【点睛】本题考查了二次根式的应用,算术平方根的定义,解题的关键在于根据正方形的面积求出两个正方形的边长2(2022秋江苏南通八年级统考期末)已知25-x2-15-x2=2,则25-x2+15-x2的值为()A3B4C5D6【答案】C【分析】根据题意,25-x2-15-x2=2,变形为25-x2=2+15-x2,两边平方得x2=1234,代入求值即可【详解】解:25-x2-15-x2=2,25-x2=2+15-x2,两边平方得, 25-x2=4+15-x2+415-x2,即415

    3、-x2=6,215-x2=3,两边再平方得, 415-x2=9,化简,得x2=1234,把x2=1234代入25-x2+15-x2,得25-12342+15-12342,=1214+214,=72+32,=5故选C【点评】本题考查了分母有理化,根据二次根式的乘除法法则进行二次根式有理化所以一般二次根式的有理化因式是符合平方差公式的特点的式子3(2022春广东广州八年级期末)若a2-3a+1+b2-2b+1=0,则a2+1a2-|7-b|=_【答案】1【分析】根据非负数的性质得到a+1a=3,b=1,再根据完全平方公式、绝对值的性质计算,得到答案【详解】解:a2-3a+1+b2-2b+1=0,a

    4、2-3a+1+(b-1)2=0,a2-3a+10,(b-1)20,a2-3a+1=0,b-1=0,a+1a=3,b=1,(a+1a)2=9,a2+1a2=7,a2+1a2-|7-b|=7-7-1=7-7+1=1故答案为:1【点睛】本题主要考查了算术平方根的非负性、完全平方公式以及代数式求值等知识,熟练掌握相关知识是解题关键4(2022春湖北武汉八年级校联考期末)若2x1=3,则x2x=_【答案】12 【分析】根据完全平方公式以及整体的思想即可求出答案【详解】解:2x1=3 ,(2x1)2=34x24x+1=34(x2x)=2x2x=12故答案为12【点睛】本题考查二次根式的运算,解题的关键是熟

    5、练运用完全平方公式,本题属于基础题型5(2022春湖北武汉八年级校联考期末)若6-13的整数部分为x,小数部分为y,则(2x+13)y的值是_.【答案】3【分析】先估算3134,再估算26-133,根据613的整数部分为x,小数部分为y,可得: x=2, y=4-13,然后再代入计算即可求解.【详解】因为3134,所以26-130,y0时,原式=xy+xy=23;当x0,y0x+y=13CGB的周长为:13+3故答案为:13+3【点睛】本题考查了全等三角形、勾股定理、算术平方根的知识;解题的关键是熟练掌握全等三角形、勾股定理、算术平方根的性质,从而完成求解4(2022秋八年级课时练习)如图,在

    6、四边形ABCD中,AD4,CD3,ABCACBADC45,则BD的长为_.【答案】41【详解】作ADAD,AD=AD,连接CD,DD,如图:BAC+CAD=DAD+CAD,即BAD=CAD,在BAD与CAD中,BA=CABAD=CADAD=AD,BAD CAD(SAS),BD=CD,DAD=90,由勾股定理得DD=AD2+(AD)2=32=42,DDA+ADC=90由勾股定理得CD=DC2+(DD)2=9+32=41BD=CD=41,故答案为:415(2022春重庆八年级重庆市育才中学校考阶段练习)在ABC中,AB=10cm,AC=17cm,BC边上的高为8cm,则ABC的面积为_cm2【答案

    7、】36或84【分析】过点A作ADBC于点D,利用勾股定理列式求出BD、CD,再分点D在边BC上和在CB的延长线上两种情况分别求出BC的长度,然后根据三角形的面积公式列式计算即可得解【详解】解:过点A作ADBC于点D,BC边上的高为8cm,AD=8cm,AC=17cm,由勾股定理得:BD=AB2-AD2=102-82=6cm,CD=AC2-AD2=172-82=15cm,如图1,点D在边BC上时,BC=BD+CD=6+15=21cm,ABC的面积=12BCAD=12218=84cm2,如图2,点D在CB的延长线上时,BC= CDBD=156=9cm,ABC的面积=12BCAD=1298=36 c

    8、m2,综上所述,ABC的面积为36 cm2或84 cm2,故答案为:36或84【点睛】本题考查了勾股定理,作辅助线构造出直角三角形是解题的关键,难点是在于要分情况讨论6(2022秋福建福州八年级福建省福州屏东中学校考期末)如图,在ABC中,ACB=90,B=30,D在AB上,E在CB上,A,C关于DE的对称点分别是G,F,若F在AB上,DGAB,DG=3+1,则DE的长是_【答案】32【分析】连接CD,取AC的中点T,连接DT,过点E作EHCD于H,根据三角形内角和定理得出A=60,根据翻折的性质及含30度角的直角三角形的性质得出AB=43+4,利用等边三角形的判定和性质得出DT=AT=TC,

    9、再由等腰三角形的判定和性质及勾股定理求解即可【详解】解:连接CD,取AC的中点T,连接DT,过点E作EHCD于H,ACB=90, B=30,A=90-30=60,由翻折的性质可知,AD=DG=3+1,AC=FG, ADE=GDE,A=G=60,DGAB,GDF=90, DFG=30,FG=AC=2DG= 23+2,DF=GF2-GD2=3+3,AB=2AC=43+4,AT=CT=3+1=AD, A=60,ADT是等边三角形,DT=AT=TC,ADC=90,ACD=90-60=30,DCE=DFE=60,DFE=B+FEB,FEB=B=30,EC=EF=FB=43+4-3-1-3-3=23,CH

    10、=12EC=3,CD=DF=3+3,DH=CD-CH=3+3-3=3,CDE=EDF=45,DE=2DH=32,故答案为:32【点睛】题目主要考查三角形的翻折,及含30度角的直角三角形的性质,勾股定理解三角形,等腰三角形的判定和性质等,理解题意,作出辅助线,综合运用这些知识点是解题关键,难度较大7(2022秋河南南阳八年级统考期末)如图,RtABC中,ABC=90,BC=8,AB=6,AD是BAC的角平分线,CDAD,则BDC的面积为_【答案】8【分析】设AD和BC交于点E,过E作EF垂直于AC于点F,根据角平分线性质意有BE=EF,可证ABEAEF,设BE=x,EC=8- x,在RtEFC中

    11、利用勾股定理计算出EF和EC的长度,然后由面积相等,可求DC的长度,应用勾股定理求出DE,再由CDE的面积求出DG,计算面积即可【详解】解:如图所示,设AD和BC交于点E,过E作EF垂直于AC于点F,过D作DG垂直于BC交BC于点GAD是BAC的角平分线,ABC=90,AFE=90,BE=FE在RtABE和RtAFE中AB=AFAE=AERtABERtAFE(HL)AB=AF=6,在RtABC中BC=8,AB=6,AC=10FC=4设BE=x,则EC=8- x,在RtEFC中由勾股定理可得:x2+42=(8-x)2解得x=3在RtABE中由勾股定理可得:AB2+BE2=AE2AE=35SCAE

    12、=12ACEF=12AECDCD=25,在RtCDE中由勾股定理可得:CD2+DE2=CE2DE=5,SCDE=12CDED=12GDECCDED=GDECGD=2SBCD=12GDBC=8,故答案为:8【点睛】本题主要考查三角形综合应用,解题的关键是利用角平分线性质构造辅助线,然后结合面积相等和勾股定理求相关长度8(2022秋四川眉山八年级统考期末)如图所示,圆柱体底面圆的半径是2 ,高为1,若一只小虫从A点出发沿着圆柱体的外侧面爬行到C点,则小虫爬行的最短路程是_【答案】5【分析】先将图形展开,再根据两点之间线段最短可知【详解】圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C是边

    13、的中点,矩形的宽即高等于圆柱的母线长AB=2=2,CB=1AC= AB2BC2= 2212=5,故答案为:5.【点睛】圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决9(2022秋四川眉山八年级统考期末)已知:如图,等腰RtOAB的直角边OA的长为1,以AB边上的高OA1为直角边,按逆时针方向作等腰RtOA1B1,A1B1与OB相交于点A2,若再以OA2为直角边按逆时针方向作等腰RtOA2B2,A2B2与OB1相交于点A3,按此作法进行下去,得到OA3B3,OA4B4,则OA6B6的周长是_.【

    14、答案】2+28【分析】依次求出在RtOAB中,OA122;在RtOA1B1中,OA222OA1(22)2;依此类推:在RtOA5B5中,OA6(22)6,由此可求出OA6B6的周长【详解】等腰RtOAB的直角边OA的长为1,在RtOA1B1中OA122OA22,在RtOA2B2中OA222OA1(22)2,故在RtOA6B6中OA622OA5(22)6= OB6A6B6=2OB6=28故OA6B6的周长是28+2(22)6=28+218=2+28故答案为:2+28【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题考点3平行四边形选填期末真题压轴

    15、题1(2022秋四川眉山八年级校考阶段练习)如图,正方形ABCD中,点E是AD边的中点,BD、CE交于点H,BE、AH交于点G,则下列结论:AGBE;BE:BC=5:2;SBHE=SCHD;AHB=EHD其中正确的个数是A1B2C3D4【答案】D【分析】首先根据正方形的性质证得BAECDE,推出ABEDCE,再证 ADHCDH,求得HADHCD,推出ABEHAD:求出ABE+BAG90;最后在AGE中根据三角形的内角和是180求得AGE90即可得到正确;因为点E是AD边的中点,求出AB= 2AE,BE=5 AE即可求得BE:BC=5:2,故正确;根据 AD BC,求出SBDE=SCDE,推出

    16、SBDESDEH=SCDESDEH,即;SBHE=SCHD,故正确;由AHDCHD,得到邻补角和对顶角相等得到AHBEHD,故正确【详解】四边形ABCD是正方形,E是AD边上的中点,AE=DE,AB=CD,BAD=CDA=90,在BAE和CDE中AE=DEBAE=CDEAB=CDABAECDE(SAS),ABE=DCE,四边形ABCD是正方形,AD=DC,ADB=CDB=45,在ADH和CDH中,AD=CDADH=CDHDH=DHADHCDH(SAS),HAD=HCD,ABE=DCEABE=HAD,BAD=BAH+DAH=90,ABE+BAH=90,AGB=180-90=90,AGBE,故正确

    17、;点E是AD边的中点,AB= 2AE,BE=5 AEBE:BC=5:2,故正确;ADBC,SBDE=SCDE,SBDESDEH=SCDESDEH,即;SBHE=SCHD,故正确;ADHCDH,AHD=CHD,AHB=CHB,BHC=DHE,AHB=EHD,故正确;故选:D【点睛】本题考查了全等三角形的判定与性质和正方形的性质,解题的关键是熟练掌握其性质.2(2022春四川眉山八年级校考期末)如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:BE=DG;BEDG;DE2+BG2=2a2+2b2,其中正确结论有()A0个B1个C2个D3个【答案】D【分析

    18、】由四边形ABCD与四边形EFGC都为正方形,得到四条边相等,四个角为直角,利用SAS得到三角形BCE与三角形DCG全等,利用全等三角形对应边相等即可得到BE=DG,利用全等三角形对应角相等得到CBM=MDO,利用等角的余角相等及直角的定义得到BOD为直角,利用勾股定理求出所求式子的值即可.【详解】解:四边形ABCD和EFGC都为正方形,CB=CD,CE=CG,BCD=ECG=90,BCD+DCE=ECG+DCE,即BCE=DCG.在BCE和DCG中,CBCD,BCEDCG,CECG,BCEDCG,BE=DG,故结论正确.如图所示,设BE交DC于点M,交DG于点O.由可知,BCEDCG,CBE

    19、=CDG,即CBM=MDO.又BMC=DMO,MCB=180-CBM-BMC,DOM=180-CDG-MDO,DOM=MCB=90,BEDG.故结论正确.如图所示,连接BD、EG,由知,BEDG,则在RtODE中,DE2=OD2+OE2,在RtBOG中,BG2=OG2+OB2,在RtOBD中,BD2=OD2+OB2,在RtOEG中,EG2=OE2+OG2,DE2+BG2=(OD2+OE2)+(OB2+OG2)=(OD2+OB2)+(OE2+OG2)=BD2+EG2.在RtBCD中,BD2=BC2+CD2=2a2,在RtCEG中,EG2=CG2+CE2=2b2,BG2+DE2=2a2+2b2.故

    20、结论正确.故选:D.【点睛】本题考查了旋转的性质、全等三角形的判定与性质、勾股定理,正方形的性质.3(2022春广东广州八年级铁一中学校考期末)如图所示,在菱形ABCD中,A=60,AB=2,E,F两点分别从A,B两点同时出发,以相同的速度分别向终点B,C移动,连接EF,在移动的过程中,EF的最小值为()A1B2C32D3【答案】D【详解】连接DB,作DHAB于H,如图,四边形ABCD为菱形,AD=AB=BC=CD,而A=60,ABD和BCD都是等边三角形,ADB=DBC=60,AD=BD,在RtABH中,AH=1,AD=2,DH=3,在ADE和BDF中,AD=BDA=FBDAE=BF,ADE

    21、BDF,2=1,DE=DF,1+BDE=2+BDE=ADB=60,DEF为等边三角形,EF=DE,而当E点运动到H点时,DE的值最小,其最小值为3,EF的最小值为3故选D4(2022秋浙江八年级专题练习)如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,依此规律,则点A8的坐标是()A(8,0)B(0,8)C(0,82)D(0,16)【答案】D【分析】根据题意和图形可看出每经过一次变化,都顺时针旋转45,边长都乘以2,可求出从A到A3变化后的坐标,再求出A1、A2、A3、A4、A5,继而得出

    22、A8坐标即可.【详解】解:根据题意和图形可看出每经过一次变化,都顺时针旋转45,边长都乘2,从A到A3经过了3次变化,453135,12322,点A3所在的正方形的边长为22,点A3位置在第四象限,点A3的坐标是(2,2),可得出:A1点坐标为(1,1),A2点坐标为(0,2),A3点坐标为(2,2),A4点坐标为(0,4),A5点坐标为(4,4),A6(8,0),A7(8,8),A8(0,16),故选D.【点睛】本题考查了规律题,点的坐标,观察出每一次的变化特征是解答本题的关键.5(2022春四川眉山八年级校考期末)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC是平行四边形

    23、ABCD的对角线,点E在AC上,AD=AE=BE,D=102,则BAC的大小是_【答案】26【分析】设BAC=x,然后结合平行四边形的性质和已知条件用x表示出EBA、BEC、 BCE、 BEC、 DCA、DCB,最后根据两直线平行同旁内角互补,列方程求出x即可【详解】解:设BAC=x平行四边形ABCD的对角线DC/AB,AD=BC,AD/BCDCA=BAC=xAE=BEEBA =BAC=xBEC=2xAD=AE=BEBE=BCBCE=BEC =2xDCB=BCE+DCA=3xAD/BC,D=102D+DCB=180,即102+3x=180,解得x=26故答案为26【点睛】本题主要考查了平行四边

    24、形的性质、等腰三角形的判定和性质,运用平行四边形结合已知条件判定等腰三角形和掌握方程思想是解答本题的关键6(2022春福建南平八年级统考期末)如图,矩形ABCD,点P是AD边上的动点,PEAC,PFBD,垂足分别是点E、F,已知AB=4,BC=8,则PE+PF=_【答案】855【分析】连接OP,先求得AOD的面积,根据AOD的面积=ODP的面积+ AOP的面积=12AOPE+12DOPF即可求解【详解】解:连接OP在直角ABD中,AB=4,BC=8,AC=BD=42+82=45,AO=OD=25,AOD的面积=14矩形ABCD的面积=1484=8,ODP的面积+ AOP的面积=8,12AOPE

    25、+12DOPF=8,1225(PE+PF)=8,PE+PF=855故答案为:855【点睛】本题考查矩形的性质、勾股定理,三角形的面积等知识,掌握用面积法解决问题是解答本题的关键7(2022春全国八年级专题练习)如图,将一块边长为 12 cm 正方形纸片 ABCD 的顶点 A 折叠至DC 边上的 E 点,使 DE5,折痕为 PQ,则 PQ 的长为_cm【答案】13【分析】先过点P作PMBC于点M,利用三角形全等的判定得到PQMADE,从而求出PQ=AE【详解】过点P作PMBC于点M,由折叠得到PQAE,DAE+APQ=90,又DAE+AED=90,AED=APQ,ADBC,APQ=PQM,则PQ

    26、M=APQ=AED,D=PMQ,PM=ADPQMADEPQ=AE=52+122=13故答案是:13.【点睛】本题主要考查正方形中的折叠问题, 正方形的性质.解决本题的关键是能利用折叠得出PQAE从而推理出AED=APQ=PQM,为证明三角形全等提供了关键的条件.8(2022春广东广州八年级广州市知用学校校考期末)如图,在矩形ABCD中,AB=5,AD=3,点P是AB边上一点(不与A,B重合),连接CP,过点P作PQCP交AD于点Q,连接CQ取CQ的中点M,连接MD,MP,若MDMP,则AQ的长_【答案】2【详解】分析:如图,过M作EFCD于F,则EFAB,证得MDFPME,求得ME=52,再利

    27、用梯形的中位线定理求解即可.详解:如图,过M作EFCD于F,则EFAB, MDMP,PMD=90,PME+DMF=90,FDM+DMF=90,MDF=PME,M是QC的中点,根据直角三角形斜边上的中线性质求得DM=PM=12QC,在MDF和PME中,MDF=PMEDFM=MEPDM=PM,MDFPME(AAS),ME=DF,PE=MF,EFCD,ADCD,EFAD,QM=MC,DF=CF=12DC=52;ME=52,ME是梯形ABCQ的中位线,2ME=AQ+BC,即5=AQ+3,AQ=2故答案为:2.点睛:本题考查了矩形的性质、全等三角形的判定及性质、直角三角形斜边的中线等于斜边的一半的性质、

    28、梯形的中位线的性质等知识点,过M作EFCD于F,则EFAB,构造MDFPME是解题的关键.9(2022春八年级课时练习)在四边形ABCD中,E,F分别是边AB,AD的中点,若BC=15,CD=9,EF=6,AFE=55,则ADC=_【答案】145【分析】连接BD,根据三角形中位线定理得到BD2EF12,EFBD,根据勾股定理的逆定理得到BDC90,结合图形计算即可【详解】解:连接BD,点E、F分别是边AB、AD的中点,EF=6BD2EF12,EFBD,ADBAFE55,CD=9,BC=15,BD2+CD2=122+92=225,BC2=152=225 ,BD2+CD2=BC2,BDC90,AD

    29、CADBBDC145,故答案为:145【点睛】本题考查的是三角形中位线定理、勾股定理的逆定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键10(2022春陕西渭南八年级统考期末)在我国古算书周髀算经中记载周公与商高的谈话,其中就有勾股定理的最早文字记录,即“勾三股四弦五”,亦被称作商高定理如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理图2是由图1放入矩形内得到的,BAC=90,AB=3,AC=4,则D,E,F,G,H,I都在矩形KLMJ的边上,那么矩形KLMJ的面积为_【答案】110【分析】延长AB交KF于点O,延长AC交GM于点P,可得四边形A

    30、OLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解【详解】解:如图,延长AB交KF于点O,延长AC交GM于点P,则四边形OALP是矩形CBF=90,ABC+OBF=90,又直角ABC中,ABC+ACB=90,OBF=ACB,在OBF和ACB中,BAC=BOFACB=OBFBC=BFOBFACB(AAS),AC=OB,同理:ACBPGC,PC=AB,OA=AP,矩形AOLP是正方形,边长AO=AB+AC=3+4=7,KL=3+7=10,LM=4+7=11,矩形KLMJ的面积为1011=110【点睛】本题考查了勾股定理的证明,全等三角形的判定和

    31、性质,作出辅助线构造出正方形是解题的关键11(2022山东青岛八年级青岛大学附属中学校考期末)如图,在矩形ABCD中,AB=4,BC=5,E,F分别是线段CD和线段BA延长线上的动点,沿直线EF折叠使点D的对应点D落在BC上,连接AD,DD,当ADD是以DD为腰的等腰三角形时,DE的长为_【答案】258或8932【分析】设DE=x,则CE=4-x,由折叠的性质得:DE=DE=x,由矩形的性质得出CD=AB=4,AD=BC=5,C=90,分两种情况:当DD=AD=5时,由勾股定理得:CD=DD2-CD2=3,在RtCDE中,由勾股定理得出方程,解方程即可;当DD=AD时,作DGAD于G,则CD=

    32、DG=AG=12AD=52,在RtCDE中,由勾股定理得出方程,解方程即可【详解】解:设DE=x,则CE=4-x,由折叠的性质得:DE=DE=x,四边形ABCD是矩形,CD=AB=4,AD=BC=5,C=90,分两种情况:当DD=AD=5时,由勾股定理得:CD=DD2-CD2=52-42=3,在RtCDE再,由勾股定理得:32+(4-x)2=x2,解得:x=258,即DE=258;当DD=AD时,作DGAD于G,如图所示:则CD=DG=AG=12AD=52,在RtCDE再,由勾股定理得:(52)2+(4-x)2=x2,解得:x=8932,即DE=8932;综上所述,当ADD是以DD为腰的等腰三

    33、角形时,DE的长为258或8932;故答案为:258或8932【点睛】本题考查了翻折变换的性质、矩形的性质、等腰三角形的性质、勾股定理等知识;熟练掌握翻折变换的性质,由勾股定理得出方程是解题的关键考点4一次函数选填期末真题压轴题1(2022秋安徽合肥八年级合肥市五十中学西校校考期末)甲、乙两车分别从A,B两地同时出发,沿同一条公路相向而行,相遇时甲、乙所走路程的比为23,甲、乙两车离AB中点C的路程y(千米)与甲车出发时间t(时)的关系图象如图所示,则下列说法错误的是() AA,B两地之间的距离为180千米B乙车的速度为36千米/时Ca的值为3.75D当乙车到达终点时,甲车距离终点还有30千米

    34、【答案】D【分析】根据两车相遇时甲、乙所走路程的比为2:3及两车相遇所用时间,即可求出A、B两地之间的距离;根据乙车的速度相遇时乙车行驶的路程两车相遇所用时间,进而求出乙车的速度;根据甲车的速度相遇时甲车行驶的路程两车相遇所用时间即可求出甲车的速度,然后根据时间两地之间路程的一半甲车的速度,进而求出a值;根据时间两地之间路程乙车的速度求出乙车到达终点所用时间,再求出该时间内甲车行驶的路程,用两地间的距离与甲车行驶的路程之差即可得出结论【详解】解:A、A、B两地之间的距离为182(32+3-22+3)180(千米),所以A正确;B、乙车的速度为18032+3336(千米/小时),所以B正确;C、

    35、甲车的速度为18022+33=24(千米/小时),a的值为1802243.75,所以C正确;D、乙车到达终点的时间为180365(小时),甲车行驶5小时的路程为245120(千米),当乙车到达终点时,甲车距离终点距离为18012060(千米),所以D错误故选:D【点睛】本题考查了一次函数的实际应用,结合函数的图象并逐一求出选项的内容判断正误是解题的关键2(2022秋陕西西安八年级统考期末)如图,一束光线从点A4,5出发,经y轴上的点C反射后经过点B1,0,则点C的坐标是( )A0,12B0,45C0,1D0,2【答案】C【分析】延长AC交x轴于点D,利用反射定律,推出等角,从而证明得出CDOC

    36、BO,得到BO=DO,得到D-1,0,设AD的直线的解析式为y=kx+b,待定系数法求出解析式,并求出AD直线与y轴的交点坐标,即C点坐标【详解】延长AC交x轴于点D,如图所示:由反射可知:1=BCO,又1=DCO,BCO=DCO,在CDO和CBO中,DCO=BCODOC=BOCCO=COCDOCBO,BO=DOB1,0BO=DO=1D-1,0A4,5,设AD的直线的解析式为y=kx+b,5=4k+b0=-k+b,解得k=1b=1,AD的直线的解析式为y=x+1,当x=0时,y=1,C0,1故选C【点睛】本题考查了反射定律,全等三角形的性质和判定,待定系数法求一次函数解析式,综合性较强,将知识

    37、综合运用是本题的关键3(2022秋陕西西安八年级交大附中分校校考期末)如图,在平面直角坐标系中,点A、B分别在x轴的负半轴和正半轴上,以AB为边向上作正方形ABCD,四边形OEFG是其内接正方形,若直线OF的表达式是y2x,则S正方形ABCDS正方形OEFG的值为()A43B85C169D94【答案】B【分析】根据正方形性质易得GBOFCG,从而可得CG=BO、FC=GB,设OB=a,BG=b,可得F点坐标为(a-b,a+b),根据F点在直线OF上,可求出a=3b,然后即可根据正方形面积和勾股定理求出面积比【详解】解:在正方形ABCD,正方形OEFG中,OBG=OGF=GCF=90,FG=OG

    38、,OGB+GOB=OGB+CGF=90, GOB=CGF,在GBO和FCG中,OBG=GCFGOB=FGCOG=FG GBOFCG(AAS)CG=BO、FC=GB,设CG=BO=a、FC=GB=b,BC=BG+CG=a+b,HF=OB-FC=a-b,点F坐标为(a-b,a+b),直线OF的表达式是y2x,2(a-b)=a+b,a=3b,S正方形ABCD=BC2=(a+b)2=(3b+b)2=16b2,S正方形OEFG=OG2=OB2+BG2=a2+b2=(3b)2+b2=10b2,S正方形ABCDS正方形OEFG=16b210b2=85,故选B【点睛】本题主要考查了一次函数与几何综合,解题关键

    39、是根据正方形性质求证GBOFCG(AAS),从而用参数表示点F坐标,再直线OF解析式求出线段之间关系4(2022秋陕西西安八年级交大附中分校校考期末)如图,在平面直角坐标系中,一次函数y=x+4的图象与x轴交于点A,与y轴交于点B,点P在线段AB上,PCx轴于点C,则PCO周长的最小值为()A22B4+22C4D4+42【答案】B【分析】先根据一次函数的解析式可得OA=OB=4,设点P的坐标为P(a,a+4)(-4a0),从而可得OC=-a,PC=a+4,再根据三角形的周长公式可得PCO周长为4+OP,然后根据垂线段最短可得当OPAB时,OP取得最小值,最后利用等腰直角三角形的判定与性质求出O

    40、P的最小值即可得【详解】对于一次函数y=x+4,当y=0时,x+4=0,解得x=-4,即A(-4,0),OA=4,当x=0时,y=4,即B(0,4),OB=4,由题意,设点P的坐标为P(a,a+4)(-4a0),则OC=-a,PC=a+4,因此,PCO周长为OC+PC+OP=-a+a+4+OP=4+OP,要使PCO周长最小,则只需OP取得最小值,由垂线段最短可知,当OPAB时,OP取得最小值,又OA=OB=4,OAOB,RtAOB是等腰直角三角形,AB=OA2+OB2=42,此时OP=12AB=22, PCO周长的最小值为4+22,故选:B【点睛】本题考查了一次函数的几何应用、等腰直角三角形的

    41、判定与性质、垂线段最短、勾股定理等知识点,正确找出PCO周长最小时,点P的位置是解题关键5(2022秋陕西西安八年级统考期末)小明和小亮在同一条笔直的道路上进行500米匀速跑步训练,他们从同一地点出发,先到达终点的人原地休息,已知小明先出发2秒,在跑步的过程中,小明和小亮的距离y(米)与小亮出发的时间t(秒)之间的函数关系如图所示,则下列结论错误的是()Aa=8Bb=92Cc=123D当t=20时,y=10【答案】D【详解】根据题意,t=0时,小明出发2秒行驶的路程为8米,所以,小明的速度=82=4米/秒, 先到终点的人原地休息,100秒时,小亮先到达终点, 小亮的速度=500100=5米/秒

    42、,a=8(5-4)=8(秒),b=5100-4(100+2)=92(米),c=100+924=123(秒),小明出发123秒时到达了终点,故A、B、C均正确,小亮出发20秒,小亮走了205=100米,小明走了224=88米,100-88=12米,小亮在小明前方12米,故D错误故选D.【点睛】本题主要考查一次函数的应用,能正确地识图,明确图中的拐点的含义是解题的关键.6(2022秋山东青岛八年级校考期末)如图,直线l:y=43x,点A1的坐标为3,0,过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线 l于点B2,以原点O为

    43、圆心,OB2长为半径画弧交x轴正半轴于点A3;,按此作法进行下去,点A2019的坐标为_【答案】5201832017,0【分析】由点A1的坐标可得出点B1的坐标,利用勾股定理可得出点A2的坐标,同理可得出点B2,A3,B3,A4,B4,的坐标,根据点的坐标的变化可找出变化规律“点An的坐标为5n-13n-2,0”,依此规律即可得出结论【详解】解:点A1的坐标为(3,0),A1B1x轴,且点B1在直线y=43x,点B1的坐标为(3,4),OB1=32+42=5,以OB1长为半径画弧交x轴正半轴于点A2,点A2的坐标(5,0),同理:B2(5,203),A3(253,0),B3(253,1009)

    44、,A4(1259,0),B4(1259,50027),点An的坐标为353n-1,0,即点An的坐标为5n-13n-2,0,当n=2019时,点A2019的坐标为5201832017,0,故答案为:5201832017,0【点睛】本题考查了一次函数图像上点的坐标特征、勾股定理以及点的坐标规律,根据点的坐标的变化找出坐标的变化规律是解题的关键7(2022秋山东青岛八年级山东省青岛第五十九中学校考期末)甲、乙两车从A地出发,匀速驶往B地乙车出发1h后,甲车才沿相同的路线开始行驶甲车先到达B地并停留30分钟后,又以原速按原路线返回,直至与乙车相遇图中的折线段表示从开始到相遇止,两车之间的距离ykm与

    45、甲车行驶的时间xh的函数关系的图象,则其中正确的序号是_甲车的速度是100km/h;A,B两地的距离是360km;乙车出发4.5h时甲车到达B地;甲车出发4516h最终与乙车相遇【答案】【分析】根据题意,两车距离为函数,由图象可知两车起始距离为60,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量【详解】由点(0,60)可知:乙1小时行驶了60km,因此乙的速度是60km/小时,由点(1.5,0)可知: 1.5小时后甲追上乙,甲的速度是60+601.51.5100km/小时,故正确;由点(b,80)可知:甲到B地,此时甲、乙相距80km,100-60b-1.5=80,解得:b3

    46、.5,因此A、B两地的距离是1003.5350km,故错误;甲车出发3.5小时到达B地,即乙车出发4.5小时,甲车到达B地,故正确;cb30604,a8060306050,100+60d-c=50,解得:d4516,故:甲车出发4516h最终与乙车相遇,故正确;正确的有,故填:【点睛】本题考查一次函数的应用,主要是以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态8(2022秋陕西西安八年级西安市曲江第一中学校考期末)如图,四边形ABCD的顶点坐标分别为A(-4,0),B(-2,-1),C3,0,D0,3,当过点B的直线l将四边

    47、形ABCD的面积分成面积相等的两部分时,则直线l的函数表达式为_【答案】y=54x+32【分析】先求出四边形ABCD的面积为14,然后根据当直线l与x轴平行时,直线l不能平分四边形ABCD的面积,可设直线l的解析式为y=kx+b,即可求出直线l的解析式为y=kx+2k-1,则直线l与x轴的交点坐标为(1-2kk,0),求出直线CD的解析式为y=-x+3,则直线l与直线CD的交点坐标为(4-2kk+1,5k-1k+1),再由过点B的直线l将四边形ABCD的面积分成面积相等的两部分,得到7=123-1-2kk5k-1k+1+1,由此即可得到答案【详解】解:A(-4,0),B(-2,-1),C(3,

    48、0),D(0,3),AC=7,S四边形ABCD=12ACOD+12AC-yB=14,当直线l与x轴平行时,直线l不能平分四边形ABCD的面积,可设直线l的解析式为y=kx+b,-2k+b=-1,b=2k-1,直线l的解析式为y=kx+2k-1,直线l与x轴的交点坐标为(1-2kk,0)点C坐标为(3,0),点D坐标为(0,3),直线CD的解析式为y=-x+3,当k=-1时,直线l与直线DC平行,此时直线l不可能平分四边形ABCD的面积联立y=kx+2k-1y=-x+3,解得x=4-2kk+1y=5k-1k+1,直线l与直线CD的交点坐标为(4-2kk+1,5k-1k+1),过点B的直线l将四边

    49、形ABCD的面积分成面积相等的两部分,7=123-1-2kk5k-1k+1+1,解得k=54或k=0(舍去),直线l的解析式为y=54x+32 ,故答案为:y=54x+32【点睛】本题主要考查了一次函数与几何综合,解题的关键在于能够熟练掌握一次函数的相关知识9(2022秋河南平顶山八年级统考期末)如图,在直角坐标系中,点A、B的坐标分别为1,5和4,0,点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当ABC的周长最小时点C的坐标是_【答案】(0,4)【分析】根据线段垂直平分线的性质,可得B点,根据待定系数法求函数解析式,根据自变量的值,可得相应的函数值【详解】解:作B点关于y轴的对

    50、称点B,连接AB,交y轴于C点,B点的坐标是(-4,0),设AB的函数解析式为y=kx+b,图象经过(-4,0),(1,5),得-4k+b=0k+b=5解得k=1b=4AB的函数解析式为y=x+4自变量的值为零时,y=4当ABC周长最小时,C点坐标为(0,4)故答案为:(0,4)【点睛】本题考查了一次函数综合题,(1)利用了待定系数法求函数解析式;(2)利用了线段垂直平分线的性质,两点之间线段最短10(2022春八年级课时练习)已知直线y=k1x+b1与直线y=k2x+b2的交点坐标为2,-3,则直线y=k1x-b1与直线y=k2x-b2的交点坐标为_【答案】(-2,3)【分析】由y=k1x-

    51、b1y=k2x-b2,得到x=b1-b2k1-k2,根据直线y=k1x+b1与直线y=k2x+b2的交点坐标为2,-3,得到2=b2-b1k1-k2,进而得到x=-2,将x=-2代入y=k1x-b1中,即可求解【详解】解:y=k1x-b1y=k2x-b2k1x-b1=k2x-b2x=b1-b2k1-k2直线y=k1x+b1与直线y=k2x+b2的交点坐标为2,-3-3=2k1+b1-3=2k2+b2得2k1-k2=b2-b12=b2-b1k1-k2x=-2将x=-2代入y=k1x-b1中得y=-2k1-b1=3交点坐标为(-2,3)故答案为:(-2,3)【点睛】此题主要考查直线的交点问题,解题

    52、的关键是正确理解一次函数图象交点与二元一次方程组之间的关系11(2022秋陕西西安八年级统考期末)如图,长方形OABC的顶点B的坐标为(8,7),动点P从原点O出发,以每秒2个单位的速度沿折线OA-AB运动,到点B时停止,同时,动点Q从点C出发,以每秒1个单位的速度在线段CO上运动,当一个点停止时,另一个点也随之停止在运动过程中,当线段PQ恰好经过点M(3,2)时,运动时间t的值是_【答案】2或5【详解】设直线PQ的方程为y=kx+b(k0)矩形OABC的顶点B的坐标为B(8,7),OA=7,OC=8当点P在线段OA上,即0t3.5时,如图,P(0,2t)、Q(8-t,0)直线PQ经过点M(3,2),b=2t(8-t)k+b=03k+b=2解得t=2当点P在线段AB上,即3.5t7.5时,如图,P(2t-7,7)、Q(8-t,0)直线PQ经过点M(3,2),3k+b=2(2t-7)k+b=7(8-t)k+b=0,方程组无解当直线PQx轴时,即x=3时,该直线PQ也经过点M(3,2),此时t=5,综上所述,t的值是2或5【点睛】本题考查了一次函数综合题解题的关键是分类讨论,这样可以防止错解或漏解.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:21.8 期末复习之选填压轴题专项训练(人教版)(教师版).docx
    链接地址:https://www.ketangku.com/wenku/file-769470.html
    相关资源 更多
  • 八年级道德与法治上册期末测评2新人教版.docx八年级道德与法治上册期末测评2新人教版.docx
  • 八年级道德与法治上册期末测评1新人教版.docx八年级道德与法治上册期末测评1新人教版.docx
  • 八年级道德与法治上册复习提纲(知识点总汇).docx八年级道德与法治上册复习提纲(知识点总汇).docx
  • 八年级道德与法治上册 第四单元 维护国家利益 第十课 建设美好祖国试题 新人教版.docx八年级道德与法治上册 第四单元 维护国家利益 第十课 建设美好祖国试题 新人教版.docx
  • 八年级道德与法治上册 第四单元 维护国家利益 第十课 建设美好祖国练习题 新人教版.docx八年级道德与法治上册 第四单元 维护国家利益 第十课 建设美好祖国练习题 新人教版.docx
  • 八年级道德与法治上册 第四单元 维护国家利益 第十课 建设美好祖国测试 新人教版.docx八年级道德与法治上册 第四单元 维护国家利益 第十课 建设美好祖国测试 新人教版.docx
  • 八年级道德与法治上册 第四单元 维护国家利益 第十课 建设美好祖国巩固练习 新人教版.docx八年级道德与法治上册 第四单元 维护国家利益 第十课 建设美好祖国巩固练习 新人教版.docx
  • 八年级道德与法治上册 第四单元 维护国家利益 第十课 建设美好祖国习题2 新人教版.docx八年级道德与法治上册 第四单元 维护国家利益 第十课 建设美好祖国习题2 新人教版.docx
  • 八年级道德与法治上册 第四单元 维护国家利益 第十课 建设美好祖国习题 新人教版.docx八年级道德与法治上册 第四单元 维护国家利益 第十课 建设美好祖国习题 新人教版.docx
  • 八年级道德与法治上册 第四单元 维护国家利益 第八课 国家利益至上课后巩固练习 新人教版.docx八年级道德与法治上册 第四单元 维护国家利益 第八课 国家利益至上课后巩固练习 新人教版.docx
  • 八年级道德与法治上册 第四单元 维护国家利益 第八课 国家利益至上巩固练习 新人教版.docx八年级道德与法治上册 第四单元 维护国家利益 第八课 国家利益至上巩固练习 新人教版.docx
  • 八年级道德与法治上册 第四单元 维护国家利益 第九课 树立总体国家安全观试题 新人教版.docx八年级道德与法治上册 第四单元 维护国家利益 第九课 树立总体国家安全观试题 新人教版.docx
  • 八年级道德与法治上册 第四单元 维护国家利益 第九课 树立总体国家安全观练习题 新人教版.docx八年级道德与法治上册 第四单元 维护国家利益 第九课 树立总体国家安全观练习题 新人教版.docx
  • 八年级道德与法治上册 第四单元 维护国家利益 第九课 树立总体国家安全观巩固练习 新人教版.docx八年级道德与法治上册 第四单元 维护国家利益 第九课 树立总体国家安全观巩固练习 新人教版.docx
  • 八年级道德与法治上册 第四单元 维护国家利益 第九课 树立总体国家安全观习题2 新人教版.docx八年级道德与法治上册 第四单元 维护国家利益 第九课 树立总体国家安全观习题2 新人教版.docx
  • 八年级道德与法治上册 第四单元 维护国家利益 第九课 树立总体国家安全观习题1 新人教版.docx八年级道德与法治上册 第四单元 维护国家利益 第九课 树立总体国家安全观习题1 新人教版.docx
  • 八年级道德与法治上册 第二单元 遵守社会规则 第四课 社会生活讲道德课时练3 新人教版.docx八年级道德与法治上册 第二单元 遵守社会规则 第四课 社会生活讲道德课时练3 新人教版.docx
  • 八年级道德与法治上册 第二单元 遵守社会规则 第四课 社会生活讲道德课时练2 新人教版.docx八年级道德与法治上册 第二单元 遵守社会规则 第四课 社会生活讲道德课时练2 新人教版.docx
  • 八年级道德与法治上册 第二单元 遵守社会规则 第四课 社会生活讲道德课时作业 新人教版.docx八年级道德与法治上册 第二单元 遵守社会规则 第四课 社会生活讲道德课时作业 新人教版.docx
  • 八年级道德与法治上册 第二单元 遵守社会规则 第四课 社会生活讲道德巩固练习 新人教版.docx八年级道德与法治上册 第二单元 遵守社会规则 第四课 社会生活讲道德巩固练习 新人教版.docx
  • 八年级道德与法治上册 第二单元 遵守社会规则 第五课 做守法的公民课堂练习2 新人教版.docx八年级道德与法治上册 第二单元 遵守社会规则 第五课 做守法的公民课堂练习2 新人教版.docx
  • 八年级道德与法治上册 第二单元 遵守社会规则 第五课 做守法的公民课堂练习1 新人教版.docx八年级道德与法治上册 第二单元 遵守社会规则 第五课 做守法的公民课堂练习1 新人教版.docx
  • 八年级道德与法治上册 第二单元 遵守社会规则 第五课 做守法的公民课后作业1 新人教版.docx八年级道德与法治上册 第二单元 遵守社会规则 第五课 做守法的公民课后作业1 新人教版.docx
  • 八年级道德与法治上册 第二单元 遵守社会规则 第五课 做守法的公民巩固练习 新人教版 (2).docx八年级道德与法治上册 第二单元 遵守社会规则 第五课 做守法的公民巩固练习 新人教版 (2).docx
  • 八年级道德与法治上册 第二单元 遵守社会规则 第三课 社会生活离不开规则课时练1 新人教版.docx八年级道德与法治上册 第二单元 遵守社会规则 第三课 社会生活离不开规则课时练1 新人教版.docx
  • 八年级道德与法治上册 第二单元 遵守社会规则 第三课 社会生活离不开规则课时练 新人教版.docx八年级道德与法治上册 第二单元 遵守社会规则 第三课 社会生活离不开规则课时练 新人教版.docx
  • 八年级道德与法治上册 第二单元 遵守社会规则 第三课 社会生活离不开规则课时作业 新人教版.docx八年级道德与法治上册 第二单元 遵守社会规则 第三课 社会生活离不开规则课时作业 新人教版.docx
  • 八年级道德与法治上册 第二单元 遵守社会规则 第三课 社会生活离不开规则习题1 新人教版.docx八年级道德与法治上册 第二单元 遵守社会规则 第三课 社会生活离不开规则习题1 新人教版.docx
  • 八年级道德与法治上册 第三单元 勇担社会责任 第六课 责任与角色同在课堂作业2 新人教版.docx八年级道德与法治上册 第三单元 勇担社会责任 第六课 责任与角色同在课堂作业2 新人教版.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1