4.2.1.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 4.2
- 资源描述:
-
1、4.2.1&4.2.2 等差数列的概念与等差数列的通项公式一、等差数列的定义1、文字语言:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母表示2、符号语言:若,则数列为等差数列(通常可称为AP数列)【注意】(1)“从第2项起”是指第1项前面没有项,无法与后续条件中“与前一项的差”相吻合(2)“每一项与它的前一项的差”这一运算要求是指“相邻且后项减去前项”,强调了:作差的顺序;这两项必须相邻(3)定义中的“同一常数”是指全部的后项减去前一项都等于同一个常数,否则这个数列不能称为等差数列二、等差数列的通项公式与等差中项
2、1、等差数列的通项公式已知等差数列的首项为a1,公差为d,则通项公式为:等差数列通项公式的推导过程:如果等差数列的首项是,公差是,根据等差数列的定义得到:,所以,由此归纳出等差数列的通项公式为2、等差中项如果三个数a,A,b成等差数列,那么A叫做a与b的等差中项这三个数满足的关系式是A.三、判断或证明一个数列是等差数列的方法1、定义法:(常数)是等差数列;2、中项法:是等差数列;3、通项公式法:(,为常数)是等差数列。四、等差数列的性质1、若是公差为d的等差数列,正整数m,n,p,q满足mnpq,则.特别地,当mn2k(m,n,kN*)时,.2、对有穷等差数列,与首末两项“等距离”的两项之和等
3、于首末两项的和,即3、若是公差为d的等差数列,则(c为任一常数)是公差为d的等差数列;(c为任一常数)是公差为cd的等差数列;(k为常数,kN*)是公差为2d的等差数列4、若,分别是公差为d1,d2的等差数列,则数列 (p,q是常数)是公差为的等差数列5、通项公式的推广: (n,mN*)五、设元法巧解等差数列中常见的设元技巧1、某两个数是等差数列中的连续两个数且知其和,可设这两个数为:,公差为;2、三个数成等差数列且知其和,常设此三数为:,公差为;3、四个数成等差数列且知其和,常设成,公差为。六、等差数列的实际应用1、解决实际应用问题,首先要认真领会题意,根据题目条件,寻找有用的信息若一组数按
4、次序“定量”增加或减少时,则这组数成等差数列。2、合理地构建等差数列模型是解决这类问题的关键,在解题过程中,一定要分清首项、项数等关键的问题题型一 等差数列的判断【例1】(多选)下列数列是等差数列的有( )A2, 2, 2, 2, 2BC0, 2, 0, 2, 0, 2D2, 0, 2, 4, 6【变式1-1】以下不能构成等差数列的是( )A2,2,2,2 B,C, D,【变式1-2】已知数列是等差数列,下面的数列中必为等差数列的个数为( ) A0 B1 C2 D3【变式1-3】如果一个数列的前5项分别是1,2,3,4,5,则下列说法正确的是( )A该数列一定是等差数列 B该数列一定不是等差数
5、列C该数列不一定是等差数列 D以上结论都不正确【变式1-4】已知数列满足,且,则下列说法正确的是( )A数列是以为首项,为公差的等差数列B数列是以为首项,为公差的等差数列C数列是以为首项,为公差的等差数列D数列是以为首项,为公差的等差数列题型二 等差数列的通项及基本量【例2】已知数列为等差数列,那么数列的通项公式为( )A B C D【变式2-1】在等差数列-5,-2,的每相邻两项中插入一个数,使之成为一个新的等差数列,则新的数列的通项公式为( )A BC D【变式2-2】若数列满足,则数列的通项公式为( )A B C D【变式2-3】已知数列中,且,则( )A B C D【变式2-4】已知数
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2022八年级语文下册 第1单元 4 灯笼教学课件 新人教版.pptx
