9.2 椭圆(精讲)(学生版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 9.2 椭圆精讲学生版 椭圆 学生
- 资源描述:
-
1、9.2椭圆(精讲)一椭圆的定义1.定义:平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹2.焦点:两个定点F1,F2.3.焦距:两焦点间的距离|F1F2|.4.半焦距:焦距的一半5.其数学表达式:集合PM|MF1|MF2|2a,|F1F2|2c,其中a0,c0,且a,c为常数:(1)若ac,则集合P为椭圆;(2)若ac,则集合P为线段;(3)若ac,则集合P为空集.二椭圆的简单几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程1(ab0)1(ab0)范围axa且bybbxb且aya顶点A1(a,0),A2(a,0),B1(0,b),B2(0,b)A1(0,a),A
2、2(0,a),B1(b,0),B2(b,0)轴长短轴长为2b,长轴长为2a焦点F1(c,0),F2(c,0)F1(0,c),F2(0,c)焦距|F1F2|2c对称性对称轴:x轴和y轴,对称中心:原点离心率e(0e1)a,b,c的关系a2b2c2一.若点P在椭圆上,F为椭圆的一个焦点,则1.b|OP|a;2.ac|PF|ac.二.焦点三角形:椭圆上的点P(x0,y0)与两焦点构成的PF1F2叫作焦点三角形,r1|PF1|,r2|PF2|,F1PF2,PF1F2的面积为S,则在椭圆1(ab0)中:(1)当r1r2时,即点P的位置为短轴端点时,最大;(2)Sb2tan c|y0|,当|y0|b时,即
3、点P的位置为短轴端点时,S取最大值,最大值为bc.三标准方程1.利用定义法求椭圆标准方程,要注意条件2a|F1F2|;利用待定系数法要先定形(焦点位置),再定量,也可把椭圆方程设为mx2ny21(m0,n0,mn)的形式.2.椭圆的标准方程的两个应用方程1与(0)有相同的离心率.与椭圆1(ab0)共焦点的椭圆系方程为1(ab0,kb20),恰当运用椭圆系方程,可使运算简便.四椭圆离心率建立关于a,b,c的关系式(等式或不等式),转化为e的关系式,常用方法如下:1.直接求出a,c,利用离心率公式e求解2.由a与b的关系求离心率,利用变形公式e 求解3.构造a,c的齐次式离心率e的求解中可以不求出
4、a,c的具体值,而是得出a与c的关系式,从而求得e.五弦长(1)当弦的两端点坐标易求时,可直接利用两点间的距离公式求解(2)当直线的斜率存在时,斜率为k的直线l与椭圆C相交于A(x1,y1),B(x2,y2)两个不同的点,则弦长|AB|x1x2|y1y2|(k0)六直线与椭圆位置关系的方法(1)研究直线和椭圆的位置关系,一般转化为研究直线方程与椭圆方程组成的方程组解的个数问题;(2)对于过定点的直线,也可以通过定点在椭圆内部或椭圆上判定直线和椭圆有交点 考点一 椭圆的定义及应用【例1-1】(2023春江西高三统考阶段练习)已知椭圆为两个焦点,为椭圆上一点,若的周长为4,则()A2B3CD【例1
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2023部编三下语文第七单元23海底世界第1课时课件.pptx
