【精品奥数】六年级下册数学思维训练讲义-第十七讲 对策问题人教版(含答案).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精品奥数 【精品奥数】六年级下册数学思维训练讲义-第十七讲 对策问题 人教版含答案 精品 六年级 下册 数学 思维 训练 讲义 第十七 对策 问题 人教版 答案
- 资源描述:
-
1、第十七讲 对策问题第一部分:趣味数学怎样过河?一个农夫带着一条狗、一只鸡和一袋米去赶集。路上遇到一条河,农夫要把这3样东西都运过去。然而,只有一条船,而且船很小,每次只能运过去一样东西。可是,如果农夫不在场,狗要吃鸡,鸡要去啄米。现在,请你想一想,农夫怎样才能把这3样东西都运过河去,而且不受到任何损失呢?关键是狗不会吃米。因此农夫应该这样做:第一步,带着鸡过河。第二步,把鸡放在对岸,自己独自驾驶小船回到原处第三步,带着狗过河,到了对岸把狗放下,把鸡带上船,驶回原处。第四步,把鸡留在原处,带着大米过河,放在对岸,然后独自划船回来。最后,带着鸡过河。第二部分:习题精讲专题简析:同学们都熟悉“田忌与
2、齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。哪一方的策略更胜一筹,哪一方就会取得最终的胜利。解决这类问题一般采用逆推法和归纳法。例题1:两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。挨到谁移走最后一根火柴就算谁输。如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证
3、获胜。先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。设先移的人为甲,后移的人为乙。甲要取胜只要取走第999根火柴。因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。依次类推,甲取的与乙取的之和为8根火柴)。由此继续推下去,甲只要取第983根,第975根,第7根就能保证获胜。所以,先移火柴的人要保证获胜,第一次应移走7根火柴。练习1:1.一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。每人每次可以拿1至3根,不许不拿,乙让甲先拿。问:谁能一定取胜?他要取胜应采取什么策略?2.两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的数
4、累加起来,谁先报到88,谁就获胜。问:先报数者有必胜的策略吗?3.把1994个空格排成一排,第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移1格、2格、3格,谁先移到最后一格谁胜。先移者确保获胜的方法是什么?例题2:有1987粒棋子。甲、乙两人分别轮流取棋子,每次最少取1粒,最多取4粒,不能不取,取到最后一粒的为胜者。现在两人通过抽签决定谁先取。你认为先取的能胜,还是后取的能胜?怎样取法才能取胜?从结局开始,倒推上去。不妨设甲先取,乙后取,剩下1至4粒,甲可以一次拿完。如果剩下5粒棋子,则甲不能一次拿完,乙胜。因此甲想取胜,只要在某一时刻留下5粒棋子就行了。不妨设甲先取,则甲能取胜。
5、甲第一次取2粒,以后无论乙拿几粒,甲只要使自己的粒数与乙拿的粒数之和正好等于5,这样,每一轮后,剩下的棋子粒数总是5的倍数,最后总能留下5粒棋子,因此,甲先取必胜。练习2:1.甲、乙两人轮流从1993粒棋子中取走1粒或2粒或3粒,谁取到最后一粒的是胜利者,你认为先取的能获胜,还是后取的能获胜,应采取什么策略?2.有1997根火柴,甲、乙两人轮流取火柴,每人每次可取1至10根,谁能取到最后一根谁为胜利者,甲先取,乙后取。甲有获胜的可能吗?取胜的策略是什么?3.盒子里有47粒珠子,两人轮流取,每次最多取5粒,最少取1粒,谁最先把盒子的珠子取完,谁就胜利,小明和小红来玩这个取珠子的游戏,先名先、小红
6、后,谁胜?取胜的策略是什么? 例题3:在黑板上写有999个数:2,3,4,1000。甲、乙两人轮流擦去黑板上的一个数(甲先擦,乙后擦),如果最后剩下的两个数互质,则甲胜,否则乙胜。谁必胜?必胜的策略是什么?甲先擦去1000,剩下的998个数,分为499个数对:(2,3),(4,5),(6,7),(998,999)。可见每一对数中的两个数互质。如果乙擦去某一对中的一个,甲则接着擦去这对中的另一个,这样乙、甲轮流去擦,总是一对数、一对数地擦,最后剩下的一对数必互质。所以,甲必胜。练习3:1.甲、乙两人轮流从分别写有1,2,3,99的99张卡片中任意取走一张,先取卡的人能否保证在他取走的第97张卡片
7、时,使剩下的两张卡片上的数一个是奇数,一个是偶数?2.两个人进行如下游戏,即两个人轮流从数列1,2,3,100,101勾去九个数。经过这样的11次删除后,还剩下两个数。如果这两个数的差是55,这时判第一个勾数的人获胜。问第一个勾数的人能否获胜?获胜的策略是什么?3.在黑板上写n1(n3)个数:2,3,4,n。甲、乙两人轮流在黑板上擦去一个数。如果最后剩下的两个数互质,则乙胜,否则甲胜。N分别取什么值时:(1)甲必胜?(2)乙必胜?必胜的策略是什么?例题4:甲、乙两人轮流在黑板上写下不超过10的自然数,规定禁止在黑板上写已写过的数的约数,最后不能写的人为失败者。如果甲第一个写,谁一定获胜?写出一
8、种获胜的方法。这里关键是第一次写什么数,总共只有10个数,可通过归纳试验。甲不能写1,否则乙写6,乙可获胜;甲不能写3,5,7,否则乙写8,乙可获胜;甲不能写4,9,10,否则乙写6,乙可获胜。因此,甲先写6或8,才有可能获胜。甲可以获胜。如甲写6,去掉6的约数1,2,3,6,乙只能写4,5,7,8,9,10这六个数中的一个,将这六个数分成(4,5),(7,9),(8,10)三组,当乙写某组中的一个数,甲就写另一个数,甲就能获胜。练习4:1.甲、乙两人轮流在黑板上写上不超过14的自然数。书写规则是:不允许写黑板上已写过的数的约数,轮到书写人无法再写时就是输者。现甲先写,乙后写,谁能获胜?应采取
9、什么对策?2.甲、乙两人轮流从分别写有3,4,5,11的9张卡片中任意取走一张,规定取卡人不能取已取过的数的倍数,轮到谁无法再取时,谁就输。现甲先取,乙后取,甲能否必然获胜?应采取的对策是什么?3.甲、乙两人轮流在2004粒棋子中取走1粒,3粒,5粒或7粒棋子。甲先取,乙后取,取到最后一粒棋子者为胜者。甲、乙两人谁能获胜?例题5:有一个33的棋盘以及9张大小为一个方格的卡片如图37-1所示,9张卡片分别写有:1,3,4,5,6,7,8,9,10这几个数。小兵和小强两人做游戏,轮流取一张卡片放在9格中的一格,小兵计算上、下两行6个数的和;小强计算左、右两列6个数的和,和数大的一方取胜。小兵一定能
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-810367.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2024年高考语文一轮总复习第4部分语言文字运用任务2考点突破考点10图文转换第1讲理顺前后序简明表其意--框架流程类课件.pptx
