分享
分享赚钱 收藏 举报 版权申诉 / 12

类型专题07 导数中压轴题的洛必达法则运用(解析版).docx

  • 上传人:a****
  • 文档编号:829798
  • 上传时间:2025-12-15
  • 格式:DOCX
  • 页数:12
  • 大小:580.19KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题07 导数中压轴题的洛必达法则运用解析版 专题 07 导数 压轴 洛必达 法则 运用 解析
    资源描述:

    1、导数章节知识全归纳专题07 导数压轴题的洛必达法则运用一洛必达法则基础知识认识:作者语录:(本节内容本应该在大学高等代数中学习,由于目前高考考向和试题难度问题,运用洛必达法则解答题可以针对适当题型解答更加快速和容易,同时也更能够很好求参数,很多时候都是额外补充,针对学习较好同学可适当深入)法则1 若函数f(x) 和g(x)满足下列条件:(1) 及; (2)在点a的去心邻域内,f(x) 与g(x) 可导且g(x)0; (3),那么 =。 法则2 若函数f(x) 和g(x)满足下列条件:(1) 及; (2),f(x) 和g(x)在与上可导,且g(x)0; (3),那么 =。 法则3 若函数f(x)

    2、 和g(x)满足下列条件:(1) 及; (2)在点a的去心邻域内,f(x) 与g(x) 可导且g(x)0; (3),那么 =。注意:利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: 1.将上面公式中的xa,x换成x+,x-,洛必达法则也成立。2.洛必达法则可处理,型。3.在着手求极限以前,首先要检查是否满足,型定式,否则滥用洛必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。 4.若条件符合,洛必达法则可连续多次使用,直到求出极限为止。二导数压轴中洛必达法则运用典例:例:1.函数,曲线在点处的切线方程为.(1)求、的值;(

    3、2)如果当,且时,求的取值范围.解:(1)易得,.(2)方法一:分类讨论、假设反证法由(1)知,所以.考虑函数,则.(i)当时,由知,当时,.因为,所以当时,可得;当时,可得,从而当且时,即;(ii)当时,由于当时,故,而,故当时,可得,与题设矛盾.(iii)当时,而,故当时,可得,与题设矛盾.综上可得,的取值范围为.注:分三种情况讨论:;不易想到.尤其是时,许多考生都停留在此层面,举反例更难想到.而这方面根据不同题型涉及的解法也不相同,这是高中阶段公认的难点,即便通过训练也很难提升.方法二:运用洛必达和导数求解本题的恒成立问题当,且时,即,也即,记,且则,记,则,从而在上单调递增,且,因此当

    4、时,当时,;当时,当时,所以在上单调递减,在上单调递增.由洛必达法则有 ,即当,且时,.因为恒成立,所以.综上所述,当,且时,成立,的取值范围为.注:(1)本题由已知很容易想到用分离变量的方法把参数分离出来.然后对分离出来的函数求导,研究其单调性、极值.(2)分离参数之后,先帮助我们找到正确答案,在利用常规不分离的思路去证时是不可能的,这时要分和两种情况就显得比较明显了(大家可以尝试着改写).例:2.已知函数,(1)若函数是上的单调递增函数,求实数的最小值;(2)若,且对任意,都有不等式成立,求实数的取值范围解:(1)函数在R上单调递增,恒成立,即,.(2)考虑变量分离,应用洛必达法则求解:,

    5、函数,由对任意都成立,得恒成立.即恒成立.当,恒成立;当,恒成立;当时,即:恒成立;令,则在上单调递增;(行不通,洛必达法则),所以:初等方法解决:,函数,.对于任意,令,则当,即时,在上为单调递增函数,符合题意,.当,即时,令,于是.,在上为单调递增函数,即,.()当,即时,在上为单调递增函数,于是,符合题意,.()当,即时,存在,使得当时,有,此时在上为单调递减函数,从而,不能使恒成立,综上所述,实数的取值范围为.注:本题是与三角函数导数有关的问题,如果没有洛必达法则的应用,分界点的选取就显得很不自然了,不容易想到.借助于洛必达法则,在用初等方法改写的过程中,分界点的讨论选取就显得很自然了

    6、.变式:1.设函数.(1)证明:当时,;(2)设当时,求的取值范围.解:(1)易证.(2)应用洛必达法则和导数由题设,此时.当时,若,则,不成立;当时,当时,即;若,则;若,则等价于,即.记,则.记,则,.因此,在上单调递增,且,所以,即在上单调递增,且,所以.因此,所以在上单调递增.由洛必达法则有,即当时,即有,所以.综上所述,的取值范围是.变式:2.设函数。(1) 若,求的单调区间;(2) 若当时,求的取值范围解:(1)时,.当时,;当时,.故在单调减少,在单调增加(II)由(I)知,当且仅当时等号成立.故,从而当,即时,而,于是当时,.由可得.从而当时,故当时,而,于是当时,.综合得的取

    7、值范围为原解在处理第(II)时较难想到,现利用洛必达法则处理如下:另解:(II)当时,对任意实数a,均在;当时,等价于令(x0),则,令,则,知在上为增函数,;知在上为增函数,;,g(x)在上为增函数。由洛必达法则知,故综上,知a的取值范围为。变式:3.已知函数.(1),时,讨论函数的导数的单调性;(2)时,不等式对恒成立,求实数的取值范围.【详解】(1),时,令,由,当时,;当时,所以在上单减,在上单增;(2)时,不等式对恒成立,等价于对恒成立,令,则,令,则对恒成立,从而有在上单增,时,在上单增,即对恒成立,时,此时,使得,当时,在上单减,当时,故对不成立,综上,的取值范围是.变式:4.已

    8、知函数(1)若,求的极值;(2)若时,恒成立,求实数的取值范围.解:【分析】(1)根据题意,定义域是,进而求导得,再结合可得函数的单调性,进而得答案;(2)设,利用导数即可得其值域为,进而分和两种情况讨论求解即可.【详解】(1)的定义域是.是增函数.当时单调递减;当时单调递增.所以,有极小值,且没有极大值.(2)设,则,当时在区间上单调递减,当时,的值域是,即值域为若,设,则有,在区间上单调递增.,使得,即与题意不合,舍.若,则,使得在区间上单调递增.当时单调递减;当时单调递增.要使在区间上恒成立,由于,则必须,即,所以所以,实数的取值范围是.【点睛】本题考查利用导数研究函数的极值,不等式恒成立问题,考查运算求解能力,逻辑推理能力,分类讨论思想,是难题.本题第二问解题的关键在于分和两种情况讨论.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题07 导数中压轴题的洛必达法则运用(解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-829798.html
    相关资源 更多
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附完整答案【网校专用】.docx人教版六年级上册数学第一单元《分数乘法》测试卷附完整答案【网校专用】.docx
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附完整答案【精选题】.docx人教版六年级上册数学第一单元《分数乘法》测试卷附完整答案【精选题】.docx
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附完整答案【有一套】.docx人教版六年级上册数学第一单元《分数乘法》测试卷附完整答案【有一套】.docx
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附完整答案【易错题】.docx人教版六年级上册数学第一单元《分数乘法》测试卷附完整答案【易错题】.docx
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附完整答案【夺冠系列】.docx人教版六年级上册数学第一单元《分数乘法》测试卷附完整答案【夺冠系列】.docx
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附完整答案【名校卷】.docx人教版六年级上册数学第一单元《分数乘法》测试卷附完整答案【名校卷】.docx
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附完整答案【名师系列】.docx人教版六年级上册数学第一单元《分数乘法》测试卷附完整答案【名师系列】.docx
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附完整答案【各地真题】.docx人教版六年级上册数学第一单元《分数乘法》测试卷附完整答案【各地真题】.docx
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附完整答案【典优】.docx人教版六年级上册数学第一单元《分数乘法》测试卷附完整答案【典优】.docx
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附完整答案【全国通用】.docx人教版六年级上册数学第一单元《分数乘法》测试卷附完整答案【全国通用】.docx
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(黄金题型).docx人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(黄金题型).docx
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(达标题).docx人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(达标题).docx
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(轻巧夺冠).docx人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(轻巧夺冠).docx
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(能力提升).docx人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(能力提升).docx
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(精练).docx人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(精练).docx
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(突破训练).docx人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(突破训练).docx
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(巩固).docx人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(巩固).docx
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(实用).docx人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(实用).docx
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(完整版).docx人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(完整版).docx
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(基础题).docx人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(基础题).docx
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(培优).docx人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(培优).docx
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(培优a卷).docx人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(培优a卷).docx
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(名师推荐).docx人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(名师推荐).docx
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(b卷).docx人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(b卷).docx
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(a卷).docx人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案(a卷).docx
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案【预热题】.docx人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案【预热题】.docx
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案【达标题】.docx人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案【达标题】.docx
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案【综合题】.docx人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案【综合题】.docx
  • 人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案【综合卷】.docx人教版六年级上册数学第一单元《分数乘法》测试卷附参考答案【综合卷】.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1