专题11二次函数中矩形存在性综合应用(专项训练)(原卷版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题11 二次函数中矩形存在性综合应用专项训练原卷版 专题 11 二次 函数 矩形 存在 综合 应用 专项 训练 原卷版
- 资源描述:
-
1、专题11 二次函数中矩形存在性综合应用(专项训练)1.已知二次函数图象的顶点坐标为A(1,4),且与x轴交于点B(1,0)(1)求二次函数的表达式;(2)如图,将二次函数图象绕x轴的正半轴上一点P(m,0)旋转180,此时点A、B的对应点分别为点C、D连结AB、BC、CD、DA,当四边形ABCD为矩形时,求m的值;在的条件下,若点M是直线xm上一点,原二次函数图象上是否存在一点Q,使得以点B、C、M、Q为顶点的四边形为平行四边形,若存在,求出点Q的坐标;若不存在,请说明理由2如图1,抛物线yax2+x+c(a0)与x轴交于A(2,0),B(6,0)两点,与y轴交于点C,点P是第一象限内抛物线上
2、的一个动点,过点P作PDx轴,垂足为D,PD交直线BC于点E,设点P的横坐标为m(1)求抛物线的表达式;(2)设线段PE的长度为h,请用含有m的代数式表示h;(3)如图2,过点P作PFCE,垂足为F,当CFEF时,请求出m的值;(4)如图3,连接CP,当四边形OCPD是矩形时,在抛物线的对称轴上存在点Q,使原点O关于直线CQ的对称点O恰好落在该矩形对角线所在的直线上,请直接写出满足条件的点Q的坐标3如图,在平面直角坐标系中,经过点A(4,0)的直线AB与y轴交于点B(0,4)经过原点O的抛物线yx2+bx+c交直线AB于点A,C,抛物线的顶点为D(1)求抛物线yx2+bx+c的表达式;(2)M
3、是线段AB上一点,N是抛物线上一点,当MNy轴且MN2时,求点M的坐标;(3)P是抛物线上一动点,Q是平面直角坐标系内一点是否存在以点A,C,P,Q为顶点的四边形是矩形?若存在,直接写出点Q的坐标;若不存在,请说明理由4【生活情境】为美化校园环境,某学校根据地形情况,要对景观带中一个长AD4m,宽AB1m的长方形水池ABCD进行加长改造(如图,改造后的水池ABNM仍为长方形,以下简称水池1)同时,再建造一个周长为12m的矩形水池EFGH(如图,以下简称水池2)【建立模型】如果设水池ABCD的边AD加长长度DM为x(m)(x0),加长后水池1的总面积为y1(m2),则y1关于x的函数解析式为:y
4、1x+4(x0);设水池2的边EF的长为x(m)(0x6),面积为y2(m2),则y2关于x的函数解析式为:y2x2+6x(0x6),上述两个函数在同一平面直角坐标系中的图象如图【问题解决】(1)若水池2的面积随EF长度的增加而减小,则EF长度的取值范围是 (可省略单位),水池2面积的最大值是 m2;(2)在图字母标注的点中,表示两个水池面积相等的点是 ,此时的x(m)值是 ;(3)当水池1的面积大于水池2的面积时,x(m)的取值范围是 ;(4)在1x4范围内,求两个水池面积差的最大值和此时x的值;(5)假设水池ABCD的边AD的长度为b(m),其他条件不变(这个加长改造后的新水池简称水池3)
5、,则水池3的总面积y3(m2)关于x(m)(x0)的函数解析式为:y3x+b(x0)若水池3与水池2的面积相等时,x(m)有唯一值,求b的值5如图,抛物线yax2+2x+c的对称轴是直线x1,与x轴交于点A,B(3,0),与y轴交于点C,连接AC(1)求此抛物线的解析式;(2)已知点D是第一象限内抛物线上的一个动点,过点D作DMx轴,垂足为点M,DM交直线BC于点N,是否存在这样的点N,使得以A,C,N为顶点的三角形是等腰三角形若存在,请求出点N的坐标,若不存在,请说明理由;(3)已知点E是抛物线对称轴上的点,在坐标平面内是否存在点F,使以点B、C、E、F为顶点的四边形为矩形,若存在,请直接写
6、出点F的坐标;若不存在,请说明理由6如图,在平面直角坐标系xOy中,已知抛物线yax2+x+c经过A(2,0),B(0,4)两点,直线x3与x轴交于点C(1)求a,c的值;(2)经过点O的直线分别与线段AB,直线x3交于点D,E,且BDO与OCE的面积相等,求直线DE的解析式;(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由7如图,在平面直角坐标系中,抛物线yx2+x+(m0)与x轴交于A(1,0),B(m,0)两点,与y轴交于点C,连接BC(1)若OC2OA,
7、求抛物线对应的函数表达式;(2)在(1)的条件下,点P位于直线BC上方的抛物线上,当PBC面积最大时,求点P的坐标;(3)设直线yx+b与抛物线交于B,G两点,问是否存在点E(在抛物线上),点F(在抛物线的对称轴上),使得以B,G,E,F为顶点的四边形成为矩形?若存在,求出点E,F的坐标;若不存在,说明理由8综合与探究如图,在平面直角坐标系中,抛物线yax2+2x+c(a0)与x轴交于点A、B,与y轴交于点C,连接BC,OA1,对称轴为直线x2,点D为此抛物线的顶点(1)求抛物线的解析式;(2)抛物线上C、D两点之间的距离是 ;(3)点E是第一象限内抛物线上的动点,连接BE和CE,求BCE面积
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
