分享
分享赚钱 收藏 举报 版权申诉 / 9

类型专题28 函数的零点的问题(教师版).docx

  • 上传人:a****
  • 文档编号:834272
  • 上传时间:2025-12-16
  • 格式:DOCX
  • 页数:9
  • 大小:363.79KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题28 函数的零点的问题教师版 专题 28 函数 零点 问题 教师版
    资源描述:

    1、专题28 函数的零点的问题 一、题型选讲题型一 、 函数零点个数判断与证明可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。例1、(2019苏州三市、苏北四市二调)定义在R上的奇函数f(x)满足f(x4)f(x),且在区间2,4)上则函数的零点的个数为 【答案】: 5【解析】:因为f(x4)f(x),可得f(x)是周期为4的奇函数,先画出函数f(x)在区间2,4)上的图像,根据奇函数和周期为4,可以画出f(x)在R上的图像,由

    2、yf(x)log5| x|0,得f(x)log5| x|,分别画出yf(x)和ylog5|x|的图像,如下图,由f(5)f(1)1,而log551,f(3)f(1)1,log5|3|1,可以得到两个图像有5个交点,所以零点的个数为5.变式1、【2019年高考全国卷理数】已知函数.(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;【解析】(1)f(x)的定义域为(0,1)(1,+)因为,所以在(0,1),(1,+)单调递增因为f(e)=,所以f(x)在(1,+)有唯一零点x1,即f(x1)=0又,故f(x)在(0,1)有唯一零点综上,f(x)有且仅有两个零点变式2、【2020年高考浙江

    3、】已知,函数,其中e=2.71828是自然对数的底数()证明:函数在上有唯一零点;【解析】()因为,所以在上存在零点因为,所以当时,故函数在上单调递增,所以函数以在上有唯一零点题型二、 函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中

    4、,画出函数的图像,然后数形结合求解例2、【2019年高考浙江】已知,函数若函数恰有3个零点,则Aa1,b0 Ba0 Ca1,b1,b0 【答案】C【解析】当x0时,yf(x)axbxaxb(1a)xb0,得x=b1a,则yf(x)axb最多有一个零点;当x0时,yf(x)axb=13x312(a+1)x2+axaxb=13x312(a+1)x2b,当a+10,即a1时,y0,yf(x)axb在0,+)上单调递增,则yf(x)axb最多有一个零点,不合题意;当a+10,即a1时,令y0得x(a+1,+),此时函数单调递增,令y0得x0,a+1),此时函数单调递减,则函数最多有2个零点.根据题意,

    5、函数yf(x)axb恰有3个零点函数yf(x)axb在(,0)上有一个零点,在0,+)上有2个零点,如图:b1a0且b013(a+1)312(a+1)(a+1)2b0,解得b0,1a0,b16(a+1)3,则a1,b0.故选C变式1、【2018年高考全国卷理数】已知函数若在只有一个零点,求【解析】设函数在只有一个零点当且仅当在只有一个零点(i)当时,没有零点;(ii)当时,当时,;当时,所以在单调递减,在单调递增故是在的最小值若,即,在没有零点;若,即,在只有一个零点;若,即,由于,所以在有一个零点,由(1)知,当时,所以故在有一个零点,因此在有两个零点综上,在只有一个零点时,变式2、(202

    6、0届山东省潍坊市高三上学期统考)函数若函数只有一个零点,则可能取的值有( )A2BC0D1【答案】ABC【解析】只有一个零点,函数与函数有一个交点,作函数函数与函数的图象如下, 结合图象可知,当时;函数与函数有一个交点;当时,可得,令可得,所以函数在时,直线与相切,可得.综合得:或.故选:ABC.变式3、(2020届山东省滨州市三校高三上学期联考)已知函数(e为自然对数的底),若且有四个零点,则实数m的取值可以为( )A1BeC2eD3e【答案】CD【解析】因为,可得,即为偶函数,由题意可得时,有两个零点,当时,即时,由,可得,由相切,设切点为,的导数为,可得切线的斜率为,可得切线的方程为,由

    7、切线经过点,可得,解得:或(舍去),即有切线的斜率为,故,故选:CD.二、达标训练1、(2020山东省淄博实验中学高三上期末)已知函数.若函数在上无零点,则的最小值为_.【答案】【解析】因为在区间上恒成立不可能,故要使函数在上无零点,只要对任意的,恒成立,即对任意的,恒成立.令,则,再令,则,故在上为减函数,于是,从而,于是在上为增函数,所以,故要使恒成立,只要,综上,若函数在上无零点,则的最小值为.故答案为:2、(2020届浙江省台州市温岭中学3月模拟)已知函数在区间上有零点,则的取值范围是( )ABCD【答案】B【解析】不妨设,为函数的两个零点,其中,则,.则,由,所以,可令,当,恒成立,

    8、所以.则的最大值为,此时,还应满足,显然,时,.故选:B.3、(2020届浙江省嘉兴市3月模拟)已知函数,若存在实数使在上有2个零点,则的取值范围为_【答案】【解析】已知实数使在上有2个零点,等价于与的函数图象在上有2个交点,显然与x轴的交点为,的图象关于对称,当时,若要有2个交点,由数形结合知m一定小于e,即;当时,若要有2个交点,须存在a使得在有两解,所以,因为,即,显然存在这样的a使上述不等式成立;由数形结合知m须大于在处的切线与x轴交点的横坐标,即综上所述,m的范围为故答案为:4、(2020届山东省德州市高三上期末)已知函数(为常,若为正整数,函数恰好有两个零点,求的值.【解析】因为为正整数,若,则,由(2)知在和单调递增,在单调递减,又,所以在区间内仅有实根,又,所以在区间内仅有实根.此时,在区间内恰有实根;若,在单调递增,至多有实根.若,令,则,所以.由(2)知在单调递减,在和单调递增,所以,所以在至多有实根.综上,.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题28 函数的零点的问题(教师版).docx
    链接地址:https://www.ketangku.com/wenku/file-834272.html
    相关资源 更多
  • 人教版四年级下学期期末质量监测数学试题附答案(能力提升).docx人教版四年级下学期期末质量监测数学试题附答案(能力提升).docx
  • 人教版四年级下学期期末质量监测数学试题附答案(考试直接用).docx人教版四年级下学期期末质量监测数学试题附答案(考试直接用).docx
  • 人教版四年级下学期期末质量监测数学试题附答案(综合题).docx人教版四年级下学期期末质量监测数学试题附答案(综合题).docx
  • 人教版四年级下学期期末质量监测数学试题附答案(精练).docx人教版四年级下学期期末质量监测数学试题附答案(精练).docx
  • 人教版四年级下学期期末质量监测数学试题附答案(研优卷).docx人教版四年级下学期期末质量监测数学试题附答案(研优卷).docx
  • 人教版四年级下学期期末质量监测数学试题附答案(模拟题).docx人教版四年级下学期期末质量监测数学试题附答案(模拟题).docx
  • 人教版四年级下学期期末质量监测数学试题附答案(巩固).docx人教版四年级下学期期末质量监测数学试题附答案(巩固).docx
  • 人教版四年级下学期期末质量监测数学试题附答案(夺分金卷).docx人教版四年级下学期期末质量监测数学试题附答案(夺分金卷).docx
  • 人教版四年级下学期期末质量监测数学试题附答案(基础题).docx人教版四年级下学期期末质量监测数学试题附答案(基础题).docx
  • 人教版四年级下学期期末质量监测数学试题附答案(培优a卷).docx人教版四年级下学期期末质量监测数学试题附答案(培优a卷).docx
  • 人教版四年级下学期期末质量监测数学试题附答案(名师推荐).docx人教版四年级下学期期末质量监测数学试题附答案(名师推荐).docx
  • 人教版四年级下学期期末质量监测数学试题附答案(b卷).docx人教版四年级下学期期末质量监测数学试题附答案(b卷).docx
  • 人教版四年级下学期期末质量监测数学试题附答案【预热题】.docx人教版四年级下学期期末质量监测数学试题附答案【预热题】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案【达标题】.docx人教版四年级下学期期末质量监测数学试题附答案【达标题】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案【轻巧夺冠】.docx人教版四年级下学期期末质量监测数学试题附答案【轻巧夺冠】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案【综合题】.docx人教版四年级下学期期末质量监测数学试题附答案【综合题】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案【综合卷】.docx人教版四年级下学期期末质量监测数学试题附答案【综合卷】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案【研优卷】.docx人教版四年级下学期期末质量监测数学试题附答案【研优卷】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案【满分必刷】.docx人教版四年级下学期期末质量监测数学试题附答案【满分必刷】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案【巩固】.docx人教版四年级下学期期末质量监测数学试题附答案【巩固】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案【夺分金卷】.docx人教版四年级下学期期末质量监测数学试题附答案【夺分金卷】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案【基础题】.docx人教版四年级下学期期末质量监测数学试题附答案【基础题】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案【培优】.docx人教版四年级下学期期末质量监测数学试题附答案【培优】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案【培优a卷】.docx人教版四年级下学期期末质量监测数学试题附答案【培优a卷】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案【名师推荐】.docx人教版四年级下学期期末质量监测数学试题附答案【名师推荐】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案【典型题】.docx人教版四年级下学期期末质量监测数学试题附答案【典型题】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案【b卷】.docx人教版四年级下学期期末质量监测数学试题附答案【b卷】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案ab卷.docx人教版四年级下学期期末质量监测数学试题附答案ab卷.docx
  • 人教版四年级下学期期末质量监测数学试题附答案.docx人教版四年级下学期期末质量监测数学试题附答案.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1