专题28 函数的零点的问题(教师版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题28 函数的零点的问题教师版 专题 28 函数 零点 问题 教师版
- 资源描述:
-
1、专题28 函数的零点的问题 一、题型选讲题型一 、 函数零点个数判断与证明可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。例1、(2019苏州三市、苏北四市二调)定义在R上的奇函数f(x)满足f(x4)f(x),且在区间2,4)上则函数的零点的个数为 【答案】: 5【解析】:因为f(x4)f(x),可得f(x)是周期为4的奇函数,先画出函数f(x)在区间2,4)上的图像,根据奇函数和周期为4,可以画出f(x)在R上的图像,由
2、yf(x)log5| x|0,得f(x)log5| x|,分别画出yf(x)和ylog5|x|的图像,如下图,由f(5)f(1)1,而log551,f(3)f(1)1,log5|3|1,可以得到两个图像有5个交点,所以零点的个数为5.变式1、【2019年高考全国卷理数】已知函数.(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;【解析】(1)f(x)的定义域为(0,1)(1,+)因为,所以在(0,1),(1,+)单调递增因为f(e)=,所以f(x)在(1,+)有唯一零点x1,即f(x1)=0又,故f(x)在(0,1)有唯一零点综上,f(x)有且仅有两个零点变式2、【2020年高考浙江
3、】已知,函数,其中e=2.71828是自然对数的底数()证明:函数在上有唯一零点;【解析】()因为,所以在上存在零点因为,所以当时,故函数在上单调递增,所以函数以在上有唯一零点题型二、 函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中
4、,画出函数的图像,然后数形结合求解例2、【2019年高考浙江】已知,函数若函数恰有3个零点,则Aa1,b0 Ba0 Ca1,b1,b0 【答案】C【解析】当x0时,yf(x)axbxaxb(1a)xb0,得x=b1a,则yf(x)axb最多有一个零点;当x0时,yf(x)axb=13x312(a+1)x2+axaxb=13x312(a+1)x2b,当a+10,即a1时,y0,yf(x)axb在0,+)上单调递增,则yf(x)axb最多有一个零点,不合题意;当a+10,即a1时,令y0得x(a+1,+),此时函数单调递增,令y0得x0,a+1),此时函数单调递减,则函数最多有2个零点.根据题意,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
六年级下册语文课件-15 母鸡1|冀教版(共27张PPT).pptx
