分享
分享赚钱 收藏 举报 版权申诉 / 37

类型人教版九年级数学上册第二十三章旋转专项练习试题(解析卷).docx

  • 上传人:a****
  • 文档编号:869346
  • 上传时间:2025-12-17
  • 格式:DOCX
  • 页数:37
  • 大小:927.12KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    人教版 九年级 数学 上册 第二十三 旋转 专项 练习 试题 解析
    资源描述:

    1、人教版九年级数学上册第二十三章旋转专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平面直角坐标系中,已知点P(0,2),点A(4,2)以点P为旋转中心,把点A按逆时针方向旋转60,得点B在

    2、,四个点中,直线PB经过的点是()ABCD2、下列几何图形中,是轴对称图形但不是中心对称图形的是()A梯形B等边三角形C平行四边形D矩形3、下列四个图形中,中心对称图形是()ABCD4、以下是我国部分博物馆标志的图案,其中既是轴对称图形又是中心对称图形的是()ABCD5、2022年新年贺词中提到“人不负青山,青山定不负人”,下列四个有关环保的图形中,是轴对称图形,但不是中心对称图形的是()ABCD6、如图,点A,B的坐标分别为(1,1)、(3,2),将ABC绕点A按逆时针方向旋转90,得到ABC,则B点的坐标为()A(1,3)B(1,2)C(0,2)D(0,3)7、若点P(2,)与点Q(,)关

    3、于原点对称,则mn的值分别为()ABC1D58、如图,在中,将绕点C逆时针旋转得到,点A,B的对应点分别为D,E,连接当点A,D,E在同一条直线上时,下列结论一定正确的是()ABCD9、如图,在中, 将绕点逆时针旋转得到,其中点与 点是对应点,且点在同一条直线上;则的长为()ABCD10、下列所述图形中,既是轴对称图形又是中心对称图形的是()A等腰三角形B等边三角形C菱形D平行四边形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将点绕原点O顺时针旋转得到点,则点落在第_象限2、如图,在RtABC中,BAC90,AB8,AC6,以BC为一边作正方形BDEC设正方形的对称

    4、中心为O,连接AO,则AO_3、如图,将绕点O旋转得到,若,则_,_,_4、如图,在中,将绕点按逆时针方向旋转得到,连接,直线,相交于点,连接,在旋转过程中,线段的最大值为_5、如图,在菱形中,将菱形绕点逆时针方向旋转,对应得到菱形,点在上,与交于点,则的长是_三、解答题(5小题,每小题10分,共计50分)1、分别画出绕点逆时针旋转和后的图形2、在RtABC中,BAC90,ABAC,动点D在直线BC上(不与点B,C重合),连接AD,把AD绕点A逆时针旋转90得到AE,连接DE,F,G分别是DE,CD的中点,连接FG【特例感知】(1)如图1,当点D是BC的中点时,FG与BD的数量关系是,FG与直

    5、线BC的位置关系是;【猜想论证】(2)当点D在线段BC上且不是BC的中点时,(1)中的结论是否仍然成立?请在图2中补全图形;若成立,请给出证明;若不成立,请说明理由【拓展应用】(3)若ABAC=,其他条件不变,连接BF、CF当ACF是等边三角形时,请直接写出BDF的面积3、如图,AOB中,OA=OB=6,将AOB绕点O逆时针旋转得到CODOC与AB交于点G,CD分别交OB、AB于点E、F(1)A与D的数量关系是:A_D;(2)求证:AOGDOE;(3)当A,O,D三点共线时,恰好OBCD,求此时CD的长4、在菱形中,点在的延长线上,点是直线上的动点,连接,将线段绕点逆时针得到线段,连接,.(1

    6、)如图1,当点与点重合时,请直接写出线段与的数量关系;(2)如图2,当点在上时,线段,之间有怎样的数量关系?请写出结论并给出证明; (3)当点在直线上时,若,请直接写出线段的长.5、在RtABC中,ACB90,AC2,ABC30,点A关于直线BC的对称点为A,连接AB,点P为直线BC上的动点(不与点B重合),连接AP,将线段AP绕点P逆时针旋转60,得到线段PD,连接AD,BD【问题发现】(1)如图1,当点D在直线BC上时,线段BP与AD的数量关系为,DAB;【拓展探究】(2)如图2,当点P在BC的延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;【问题解决】(3)当

    7、BDA30时,求线段AP的长度-参考答案-一、单选题1、B【解析】【分析】根据含30角的直角三角形的性质可得B(2,2+2),利用待定系数法可得直线PB的解析式,依次将M1,M2,M3,M4四个点的一个坐标代入y=x+2中可解答【详解】解:点A(4,2),点P(0,2),PAy轴,PA=4,由旋转得:APB=60,AP=PB=4,如图,过点B作BCy轴于C,BPC=30,BC=2,PC=2,B(2,2+2),设直线PB的解析式为:y=kx+b,则,直线PB的解析式为:y=x+2,当y=0时,x+2=0,x=-,点M1(-,0)不在直线PB上,当x=-时,y=-3+2=1,M2(-,-1)在直线

    8、PB上,当x=1时,y=+2,M3(1,4)不在直线PB上,当x=2时,y=2+2,M4(2,)不在直线PB上故选:B【考点】本题考查的是图形旋转变换,待定系数法求一次函数的解析式,确定点B的坐标是解本题的关键2、B【解析】【分析】根据轴对称图形和中心对称图形的定义以及性质对各项进行分析即可【详解】A、梯形不是轴对称图形,也不是中心对称图形,故本选项说法错误;B、等边三角形是轴对称图形,但不是中心对称图形,故本选项说法正确;C、平行四边形不是轴对称图形,是中心对称图形,故本选项说法错误;D、矩形是轴对称图形,也是中心对称图形,故本选项说法错误故选:B【考点】本题考查了轴对称图形和中心对称图形的

    9、判断,掌握轴对称图形和中心对称图形的定义以及性质是解题的关键3、D【解析】【分析】根据中心对称图形的概念结合各图形的特点求解【详解】解:A、不是中心对称图形,不符合题意; B、不是中心对称图形,不符合题意; C、不是中心对称图形,不符合题意; D、是中心对称图形,符合题意 故选:D【考点】本题考查了中心对称图形与轴对称图形的概念判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合4、A【解析】【分析】根据中心对称图形和轴对称图形的概念逐项分析即可,轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形中心对称图形:在平面内,把一个图形绕着某个点旋转,如果旋转后

    10、的图形能与原来的图形重合,那么这个图形叫做中心对称图形【详解】A.既是轴对称图形又是中心对称图形,故该选项符合题意;B.是轴对称图形,但不是中心对称图形,故该选项不符合题意;C.不是轴对称图形,但是中心对称图形,故该选项不符合题意;D.既不是轴对称图形也不是中心对称图形,故该选项不符合题意故选A【考点】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键5、D【解析】【分析】轴对称图形:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,

    11、那么这个图形叫做轴对称图形中心对称图形:在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称根据轴对称图形、和中心对称图形的概念,即可完成解题【详解】解:根据轴对称和中心对称的概念,选项A、B、C、D中,是轴对称图形的是B、D,是中心对称图形的是B故选:D【考点】本题主要轴对称图形、中心对称图形的概念,熟练掌握知识点是解答本题的关键6、D【解析】【分析】根据题意画出图形,然后结合直角坐标系即可得出B的坐标【详解】解:如图,根据图形可得:点B坐标为(0,3),故选:D【考点】本题考查了旋转作图的知识及旋转后坐标的变化,解答本题

    12、的关键是根据题意所述的旋转三要素画出图形,然后结合直角坐标系解答7、B【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数解答【详解】解:P(2,-n)与点Q(-m,-3)关于原点对称,2=-(-m),-n=-(-3),m=2,n=-3, 故选:B【考点】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律8、D【解析】【分析】由旋转可知,即可求出,由于,则可判断,即A选项错误;由旋转可知,由于,即推出,即B选项错误;由三角形三边关系可知,即可推出,即C选项错误;由旋转可知,再由,即可证明为等边三角形,即推出即可求出,即证明,即D选项正确;【详解】由旋转可知,点

    13、A,D,E在同一条直线上,故A选项错误,不符合题意;由旋转可知,为钝角,故B选项错误,不符合题意;,故C选项错误,不符合题意;由旋转可知,为等边三角形,故D选项正确,符合题意;故选D【考点】本题考查旋转的性质,三角形三边关系,等边三角形的判定和性质以及平行线的判定利用数形结合的思想是解答本题的关键9、A【解析】【分析】根据旋转的性质说明ACC是等腰直角三角形,且CAC=90,理由勾股定理求出CC值,最后利用BC=CC-CB即可【详解】解:根据旋转的性质可知AC=AC,ACB=ACB=45,BC=BC=1,ACC是等腰直角三角形,且CAC=90,CC=4,BC=4-1=3故选:A【考点】本题主要

    14、考查了旋转的性质、勾股定理,在解决旋转问题时,要借助旋转的性质找到旋转角和旋转后对应的量10、C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解【详解】解:A、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;C、菱形既是轴对称图形,又是中心对称图形,故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误故选C【考点】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合二、填空题1、四【解

    15、析】【分析】画出图形,利用图象解决问题即可【详解】解:如图,所以在第四象限,故答案为:四【考点】本题考查坐标与图形变化旋转,解题的关键是正确画出图形,属于中考常考题型2、;【解析】【分析】连接AO、BO、CO,过O作FOAO,交AB的延长线于F,判定AOCFOB(ASA),即可得出AO=FO,FB=AC=6,进而得到AF=8+6=14,FAO=45,根据AO=AFcos45进行计算即可【详解】解:连接AO、BO、CO,过O作FOAO,交AB的延长线于F,O是正方形DBCE的对称中心,BO=CO,BOC=90,FOAO,AOF=90,BOC=AOF,即AOC+BOA=FBO+BOA,AOC=FB

    16、O,BAC=90,在四边形ABOC中,ACO+ABO=180,FBO+ABO=180,ACO=FBO,在AOC和FOB中,AOCFOB(ASA),AO=FO,FB=FC=6,AF=8+6=14,FAO=OFA=45,AO=AFcos45=14=故答案为【考点】本题考查了正方形的性质和全等三角形的判定与性质本题的关键是通过作辅助线来构建全等三角形,然后将已知和所求线段转化到直角三角形中进行计算3、 1 【解析】【分析】根据旋转的性质,旋转前、后的两个图形全等,旋转角相等,可得出答案【详解】BAC+C=60ABC=180-60=120ABC绕点O旋转得到ABCABCABCAC=AC,ABC=ABC

    17、AC=1,ABC=120AC=1,ABC=120ABC绕点O旋转得到ABC,AOA=50,AOA=BOB=50AOB=30AOB=50-30=20 故答案为:1 ,20,120【考点】本题考察了旋转的性质做题的关键是明白旋转前、后的两个图形全等,找到对应边和对应角;旋转角相等,找到旋转角即可4、【解析】【分析】取AB的中点H,连接CH、FH,设EC,DF交于点G,在ABC中,由勾股定理得到AB=,由旋转可知:DCEACB,从而DCA=BCE,ADC=BEC,由DGC=EGF,可得AFB=90,由直角三角形斜边上的中线等于斜边的一半,可得FH=CH=AB=,在FCH中,当F、C、H在一条直线上时

    18、,CF有最大值为.【详解】解:取AB的中点H,连接CH、FH,设EC,DF交于点G,在ABC中,ACB=90,AC=,BC=2,AB=,由旋转可知:DCEACB,DCE=ACB,DC=AC,CE=CB,DCA=BCE,ADC=(180-ACD) ,BEC= (180-BCE),ADC=BEC,DGC=EGF,DCG=EFG=90,AFB=90,H是AB的中点,FH=AB,ACB=90,CH=AB,FH=CH=AB=,在FCH中,FH+CHCF,当F、C、H在一条直线上时,CF有最大值,线段CF的最大值为.故答案为:【考点】本题考查了旋转的性质、勾股定理,解决本题的关键是掌握全等的性质.5、【解

    19、析】【分析】连接交于,由菱形的性质得出,由直角三角形的性质求出,得出,由旋转的性质得:,得出,证出,由直角三角形的性质得出,即可得出结果【详解】解:连接交于,如图所示:四边形是菱形,由旋转的性质得:,四边形是菱形,;故答案为【考点】考核知识点:菱形性质,旋转性质.解直角三角形是关键.三、解答题1、画图见解析【解析】【分析】分别确定绕点逆时针旋转后的对应点 再顺次连接即可得到答案;分别确定绕点逆时针旋转后的对应点 再顺次连接即可得到答案.【详解】解:如图,是绕点逆时针旋转后的三角形,如图,是绕点逆时针旋转后的三角形,【考点】本题考查的是旋转的作图,掌握旋转的性质,旋转中心,旋转角,旋转方向是解题

    20、的关键.2、(1)FG=BD,FGBC;(2)补全图形见解析;结论仍然成立,理由见解析;(3)BDF的面积为或【解析】【分析】(1)根据等腰直角三角形的性质以及中位线定理可得结果;(2)根据题意画出图形即可;根据旋转的性质证明ABDACE,结合中位线定理证明结论;(3)分两种情况进行讨论:当点D在点B的左侧时;当点D在点C的右侧时,分别画出图形结合等边三角形的性质解答【详解】(1)BAC90,ABAC,点D是BC的中点,ADBC,ADBDCD,ABCACB45,F,G分别是DE,CD的中点,FGAD,FGAD,FGBD,FGBC,故答案为:FGBD,FGBC;(2)补全图形如图所示;结论仍然成

    21、立,理由如下:如图2,连接CE,把AD绕点A逆时针旋转90得到AE,BACDAE90,ADAE,BADCAE,又ABAC,ABDACE(SAS),CEBD,ACEBACB45,DCE90,F,G分别是DE,CD的中点,FGCEBD,FGCE,FGBC;(3)当点D在点B的左侧时,如图31中,作AMBC于M,连接FG,BAC90,ABAC,AMBC,BC2,BMCMAMBC1,BAMCAM45,ADAE,DAE90,点F是DE中点,EAFCAM45,AFFDEF,AFC是等边三角形,AFACFC,FACAFCACF60,CAE15BAD,ADMABCBAD30,DMAM,BDDMBM,由(2)的

    22、结论可得:FGBC,FGBD,BDF的面积;当点D在点C的右侧时,如图32中,作AMBC于M,连接FG,BAC90,ABAC,AMBC,BC2,BMCMAMBC1,BAMCAM45,ADAE,DAE90,点F是DE中点,EAFCAM45,AFFDEF,DAF45,AFC是等边三角形,AFACFC,FACAFCACF60,CADCAFDAF15,ADMACBCAD30,DMAM,BDDM+BM1,由(2)的结论可得:FGBC,FGBD,BDF的面积综上所述:BDF的面积为或【考点】本题考查了等腰三角形的性质,旋转的性质,等边三角形的性质以及全等三角形的判定与性质,熟练掌握以上性质定理是解本题的关

    23、键3、 (1)=(2)证明见解析(3),详见解析【解析】【分析】(1)根据旋转性质及等腰三角形性质即可得答案;(2)由旋转性质知AOB=DOC,可证得AOG=DOE,结合OA=OB及(1)中结论,得证;(3)分两种情况讨论,设A=x,先利用三角形内角和求出x的值,再借助勾股定理求出CD的长度即可(1)解:由旋转知,A=C,B=D,OA=OB,OC=OD,A=B=C=DA=D,故答案为:=(2)证明:由旋转知,OA=OC,OB=OD,AOB=COD,AOBBOC=CODBOC,即AOG=DOE,OA=OB,OA=OB=OC=OD,又A=D,AOGDOE(3)解:分两种情况讨论,如图所示,设A=B

    24、=C=D=x,则DOB=2x,OBCD,OED=90,x+2x=90,解得:x=30,即D=30,在RtODE中,OE=3,由勾股定理得:DE=,OC=OD,OECD,CD=2DE=当D与A重合时,如图所示,同理,得:CD=综上所述,当A,O,D三点共线时,OBCD,此时CD的长为【考点】本题考查了旋转的性质、等腰三角形性质、全等三角形的判定、勾股定理等知识点,解题关键是利用旋转性质得到边、角的关系4、(1)AM=DF;(2),证明见解析;(3)1或5【解析】【分析】(1)可通过证明,即可利用全等三角形的性质得出结论;(2)通过作辅助线,构造等边三角形DMN,再通过全等证明出DF=EN,利用等

    25、边三角形得出DN=DM,DA=DB,求出AM=BN,即可证明题中三线段之间的关系;(3)分别讨论当E点在线段BD和DB的延长线上两种情况,利用全等以及等边三角形的相关结论即可求出DF的长【详解】解:(1)AM=DF;理由:菱形 ABCD 中, ABC=120 ,可得BCD和ABD都是等边三角形;BD=BA, DBA=60,又由旋转可知ME=MF,EMF= 60,得MEF也是等边三角形,EF=EM,MEF= 60,MEA=FED,可证:;AM=DF(2)结论:证明:过点作交延长线于.四边形是菱形,是等边三角形,是等边三角形,是等边三角形,即:,.(3)1或5当E点在线段BD上时,由(2)知,AB

    26、=6,BD=AD=6,BD=2BE,AD=3AM,BE=3,AM=2,DF=5;当E点在线段DB的延长线上时,如图所示:作MNAB与DE交于点N,MDN=DAB=60,利用平行线的性质可得出DMN=60,则DMN是等边三角形,MN=MD,又由DMN=EMF,EMN=FMD,ME=MF,DF=ENEN=EB-BN= BD- AM=3- AD=3- 2= 1;综上可得:DF的长为1或5【考点】本题涉及到了几何图形的动点问题,综合考查了等边三角形的判定与性质、菱形的性质、全等三角形的判定与性质、旋转的性质等内容,要求学生理解相关概念与性质,能利用相关知识进行边角之间的转化,本题难点在于作辅助线,考查

    27、了学生的综合分析的能力,对学生推理分析能力有较高要求5、(1)相等;90;(2)成立,证明见解析;(3)线段AP的长度为4或4【解析】【分析】(1)首先推知AP=PB,PC=AP,根据全等三角形的性质即可得到结论;(2)如图,连接AD,根据等边三角形的性质得到AB=AA,由旋转的性质得到AP=DP,APD=60,推出AAB是等边三角形,得到PA=PD=AD,根据全等三角形的性质即可得到结论;(3)如图,由(2)知,BAD=90根据已知条件得到D在BA的延长线上,由旋转的性质得到AP=DP,APD=60,推出AAB是等边三角形,得到PA=PD=AD,于是得到结论;如图,由(2)知,BAD=90,

    28、根据旋转的性质得到AP=DP,APD=60,求得PA=PD=AD,PAD=BAA=60,根据全等三角形的性质得到PB=DA=4,根据勾股定理即可得到结论【详解】(1)在RtABC中,ACB90,AC2,ABC30,点A关于直线BC的对称点为A,则ABCABC30,ABABABA60ABA是等边三角形,AAB60,APD60,BAPABPPAC30,APPB,PCAP,APPD,PCPD,PCCD,ACAC,ACPACD,APCADC(SAS),DAAP,CADPAC30,PBDA,BAD60+3090,故答案为:相等;90;(2)成立,证明如下:如图,连接AD,AAB是等边三角形,ABAA,由

    29、旋转的性质可得:APDP,APD60,APD是等边三角形,PAPDAD,BAPBAC+CAP,AADPAD+CAP,BACPAD,BAPAAD,在BAP与AAD中,BAPAAD(SAS),BPAD,AADABC30BAA60,DABBAA+AAD90;(3)如图,当点P在BC的延长线上时,由(2)知,BAD90BDA30,DBA60,D在BA的延长线上,由旋转的性质可得:APDP,APD60,APD是等边三角形,PAPDAD,BA4,BD8,APAD4; 如图,当点P在CB的延长线上时,由(2)知,BAD90,BDA30,BA4,DA4,由旋转的性质可得:APDP,APD60,APD是等边三角形,PAPDAD,PADBAA60,PABDAA,ABAA,ABPAAD(SAS),PBDA4,AC2,BC2,CP6,AP4综上所述,线段AP的长度为4或4【考点】本题属于几何变换综合题,考查了全等三角形的判定和性质、等边三角形的判定和性质,正确的作出图形是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版九年级数学上册第二十三章旋转专项练习试题(解析卷).docx
    链接地址:https://www.ketangku.com/wenku/file-869346.html
    关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1