分享
分享赚钱 收藏 举报 版权申诉 / 32

类型人教版九年级数学上册第二十三章旋转必考点解析试卷(含答案详解版).docx

  • 上传人:a****
  • 文档编号:869378
  • 上传时间:2025-12-17
  • 格式:DOCX
  • 页数:32
  • 大小:660.17KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    人教版九年级数学上册 第二十三章旋转 九年级数学上册第二十三章 人教版九年级数学上册第二十三章 人教版九年级上册数学 人教版九年级数学上册第二十三章旋转必考点解析试卷含答案详解版.docx
    资源描述:

    1、人教版九年级数学上册第二十三章旋转必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图下面图形既是轴对称图形,又是中心对称图形的是()ABCD2、下列图形中,既是轴对称图形又是中心对称图形的是(

    2、)ABCD3、如图,在坐标系中放置一菱形 OABC,已知ABC=60,点 B 在 y 轴上,OA=1,先将菱形 OABC 沿 x 轴的正方向无滑动翻转,每次翻转 60,连续翻转2019次,点 B 的落点依次为 B1,B2,B3,则 B2 019 的坐标为()A(1010,0)B(13105, )C(1345, )D(1346,0)4、在平面直角坐标系中,点关于原点对称的点的坐标是()ABCD5、某校举办了“送福迎新春,剪纸庆佳节”比赛以下参赛作品中,是中心对称图形的是()ABCD6、如图所示,在RtABC中,ABAC,D、E是斜边BC上的两点,且DAE45,将ADC绕点A按顺时针方向旋转90后

    3、得到AFB,连接EF,有下列结论:BEDC;BAFDAC;FAEDAE;BFDC其中正确的有()ABCD7、如图,四边形是菱形,且,为对角线(不含点)上任意一点,将绕点逆时针旋转得到,当取最小值时的长()AB3C1D28、如图,AOB中,OA4,OB6,AB2,将AOB绕原点O旋转90,则旋转后点A的对应点A的坐标是()A(4,2)或(4,2)B(2,4)或(2,4)C(2,2)或(2,2)D(2,2)或(2,2)9、若点P(2,)与点Q(,)关于原点对称,则mn的值分别为()ABC1D510、有下列说法:平行四边形具有四边形的所有性质:平行四边形是中心对称图形:平行四边形的任一条对角线可把平

    4、行四边形分成两个全等的三角形;平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形其中正确说法的序号是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果点A(3,2m1)关于原点对称的点在第一象限,则m的取值范围是_2、如图,将线段AB绕点O顺时针旋转90得到线段,那么的对应点的坐标是_3、已知,正六边形ABCDEF在直角坐标系内的位置如图所示,A(2,0),点B在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60,经过2022次翻转之后,点B的坐标是_4、如图,已知菱形ABCD的边长为2,A45,将菱形ABCD绕点A旋转45

    5、,得到菱形,其中B、C、D的对应点分别是,那么点的距离为_5、如图,将ABC绕点A逆时针旋转得到ADE,点C和点E是对应点,若CAE=90,AB=1,则BD=_三、解答题(5小题,每小题10分,共计50分)1、如图,在等腰ABC中,点D为直线BC上一动点(点D不B、C重合),以AD为边向右侧作正方形ADEF,连接CF【猜想】如图,当点D在线段BC上时,直接写出CF、BC、CD三条线段的数量关系【探究】如图,当点D在线段BC的延长线上时,判断CF、BC,CD三条线段的数量关系,并说明理由【应用】如图,当点D在线段BC的反向延长线上时,点A、F分别在直线BC两侧,AEDF交点为点O连接CO,若,则

    6、 2、在RtABC中,BAC90,ABAC,动点D在直线BC上(不与点B,C重合),连接AD,把AD绕点A逆时针旋转90得到AE,连接DE,F,G分别是DE,CD的中点,连接FG【特例感知】(1)如图1,当点D是BC的中点时,FG与BD的数量关系是,FG与直线BC的位置关系是;【猜想论证】(2)当点D在线段BC上且不是BC的中点时,(1)中的结论是否仍然成立?请在图2中补全图形;若成立,请给出证明;若不成立,请说明理由【拓展应用】(3)若ABAC=,其他条件不变,连接BF、CF当ACF是等边三角形时,请直接写出BDF的面积3、图1、图2分别是77的正方形网格,网格中每个小正方形的边长均为1,点

    7、A、B在小正方形的顶点上,仅用无刻度直尺完成下列作图(1)在图1中确定点C、D(点C、D在小正方形的顶点上),并画出以AB为对角线的四边形,使其是中心对称图形,但不是轴对称图形,且面积为15;(2)在图2中确定点E、F(点E、F在小正方形的顶点上),并画出以AB为对角线的四边形,使其既是轴对称图形,又是中心对称图形,且面积为154、如图,ABC中,ABAC1,BAC45,AEF是由ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BECF ;(2)当四边形ACDE为菱形时,求BD的长5、在菱形中,点在的延长线上,点是直线上的动点,连接,将线段绕点逆时针得到线段,连接,.

    8、(1)如图1,当点与点重合时,请直接写出线段与的数量关系;(2)如图2,当点在上时,线段,之间有怎样的数量关系?请写出结论并给出证明; (3)当点在直线上时,若,请直接写出线段的长.-参考答案-一、单选题1、B【解析】【详解】解:A、是轴对称图形,但不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、是中心对称图形,但不是轴对称图形,故本选项不符合题意;D、是轴对称图形,但不是中心对称图形,故本选项不符合题意;故选:B【考点】本题主要考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形

    9、;在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键2、B【解析】【分析】利用轴对称图形和中心对称图形的定义逐项判断即可【详解】A是轴对称图形不是中心对称图形故A不符合题意B是轴对称图形也是中心对称图形故B符合题意C是轴对称图形但不是中心对称图形故C不符合题意D不是中心对称图形也不是轴对称图形故D不符合题意故选:B【考点】本题考查轴对称图形和中心对称图形的定义,根据选项灵活判断其图形是否符合题意是解本题的关键3、D【解析】【分析】连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,

    10、图形向右平移4由于2019=3366+3,因此点向右平移(即)即可到达点,根据点的坐标就可求出点的坐标【详解】连接AC,如图所示四边形OABC是菱形,OA=AB=BC=OCABC=60,ABC是等边三角形AC=ABAC=OAOA=1,AC=1由图可知:每翻转6次,图形向右平移42019=3366+3,点B3向右平移1344(即3364)到点B2019B3的坐标为(2,0),B2019的坐标为(1346,0),故选:D【考点】本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力发现“每翻转6次,图形向右平移4”是解决本题的关键4、C【解析】【分析】根据关于原点对称

    11、的点的坐标特点解答【详解】解:点P(-3,-5)关于原点对称的点的坐标是(3,5),故选:C【考点】本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数5、D【解析】【详解】解:选项A,B,C中的图形不是中心对称图形,选项D中的图形是中心对称图形,故选D【考点】本题考查的是中心对称图形的识别,中心对称图形的定义:把一个图形绕某点旋转后能够与自身重合,则这个图形是中心对称图形,掌握“中心对称图形的定义”是解本题的关键.6、C【解析】【分析】利用旋转性质可得ABFACD,根据全等三角形的性质一一判断即

    12、可【详解】解:ADC绕A顺时针旋转90后得到AFB,ABFACD,BAFCAD,AFAD,BFCD,故正确,EAFBAF+BAECAD+BAEBACDAE904545DAE故正确无法判断BECD,故错误,故选:C【考点】本题考查了旋转的性质:旋转前后两图形全等,解题的关键是熟练掌握基本知识,属于中考常考题型7、D【解析】【分析】根据“两点之间线段最短”,当E,F,G,C共线时,AG+BG+CG的值最小,即等于EC的长【详解】解:如图:将ABG绕点B逆时针旋转60得到EBF,BE=AB=BC,BF=BG,EF=AG,BFG是等边三角形,BF=BG=FG,AG+BG+CG=EF+FG+CG,根据“

    13、两点之间线段最短”,当E,F,G,C共线时,AG+BG+CG的值最小,即等于EC的长,过E点作EHBC交CB的延长线于H,如上图所示:EBH=60,EH=3,EC=2EH=6,CBE=120,BEF=30,EBF=ABG=30,,故选:D【考点】本题考查了旋转的性质,菱形的性质,等边三角形的性质,轴对称最短路线问题,正确的作出辅助线是解题的关键8、C【解析】【分析】先求出点A的坐标,再根据旋转变换中,坐标的变换特征求解;或根据题意画出图形旋转后的位置,根据旋转的性质确定对应点A的坐标【详解】过点A作于点C在RtAOC中, 在RtABC中, OA4,OB6,AB2,点A的坐标是根据题意画出图形旋

    14、转后的位置,如图,将AOB绕原点O顺时针旋转90时,点A的对应点A的坐标为;将AOB绕原点O逆时针旋转90时,点A的对应点A的坐标为故选:C【考点】本题考查了解直角三角形、旋转中点的坐标变换特征及旋转的性质(a,b)绕原点顺时针旋转90得到的坐标为(b,-a),绕原点逆时针旋转90得到的坐标为(b,a)9、B【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数解答【详解】解:P(2,-n)与点Q(-m,-3)关于原点对称,2=-(-m),-n=-(-3),m=2,n=-3, 故选:B【考点】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律10、D【解析】【分

    15、析】根据平行四边形的性质、中心对称图形的定义和全等三角形的判定进行逐一判定即可【详解】解:平行四边形是四边形的一种,平行四边形具有四边形的所有性质,故正确:平行四边形绕其对角线的交点旋转180度能够与自身重合,平行四边形是中心对称图形,故正确:四边形ABCD是平行四边形,AD=BC,CD=AB,ADC=CBAADCCBA(SAS)同理可以证明ABDCDB平行四边形的任一条对角线可把平行四边形分成两个全等的三角形,故正确;四边形ABCD是平行四边形,OA=OC,OD=OB,平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形,故正确故选D【考点】本题主要考查了中心对称图形的定义,平行四边

    16、形的性质,全等三角形的判定,三角形中线把面积分成相同的两部分等等,解题的关键在于能够熟练掌握相关知识进行求解二、填空题1、【解析】【分析】根据关于原点对称的点的横坐标与纵坐标互为相反数判断出2m+10,然后解不等式即可【详解】解:点A(3,2m+1)关于原点的对称点在第一象限,点A(3,2m+1)在第三象限,2m+10,解得m故答案为:m【考点】本题考查的是关于原点对称的点的坐标,解答本题的关键是熟练掌握关于原点对称的点的横、纵坐标均互为相反数,同时熟记各个象限内点的坐标的符号特点.2、【解析】【分析】过点A作轴,垂足为C,过点作轴,垂足为,证明,所以,根据得到,所以,写出对应点的坐标即可【详

    17、解】解:如图,过点A作轴,垂足为C,过点作轴,垂足为,轴,轴,将线段AB绕点O顺时针旋转90得到线段,故答案为:【考点】本题考查旋转的性质,证明是解答本题的关键3、【解析】【分析】根据正六边形的特点,每6次翻转为一个循环组,用2022除以6的结果判断出点B的位置,求出前进的距离【详解】解:正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60,每6次翻转为一个循环组循环,经过2022次翻转完成第337循环组,点B在开始时点B的位置, 翻转前进的距离=22022=4044,所以,点B的坐标为,故答案为:【考点】本题考查点的坐标,涉及坐标与图形变化-旋转,正六边形的性质,确定出翻转最后点

    18、B所在的位置是关键4、【解析】【分析】首先由菱形的性质可知,由旋转的性质可知:,从而可证明为直角三角形,然后由勾股定理即可求得的长度【详解】解:如图所示:四边形ABCD为菱形,由旋转的性质可知:,在中,故答案为:【考点】本题主要考查的是旋转的性质和菱形的性质以及勾股定理的应用,证得为直角三角形是解题的关键5、【解析】【详解】将ABC绕点A逆时针旋转的到ADE,点C和点E是对应点,AB=AD=1,BAD=CAE=90,BD=.故答案为:.三、解答题1、【猜想】CD= BC- CF,理由见解析;【探究】CF= BC+ CD,理由见解析;【应用】【解析】【分析】【猜想】 利用SAS证明BADCAF,

    19、得出BD= CF,然后根据线段的和差关系可得结论;【探究】利用SAS证明BADCAF,得出BD= CF,然后根据线段的和差关系可得出结论;【应用】 利用SAS证明BADCAF,得出BD= CF,ACF=ABD = 135,求出DCF= 90,在RtDCF中利用勾股定理求出DF,利用直角三角形的斜边中线的性质可得结论【详解】解:【猜想】CD= BC- CF,理由如下:BAC=90,AB=AC,ABC=ACB=45,四边形ADEF是正方形,AD= AF,DAF= 90=BAC,BAD=FAC,在BAD和CAF中, ,BADCAF (SAS),BD= CF,CD= BC- BD,CD= BC- CF

    20、:解:【探究】CF= BC+ CD,理由如下:BAC= 90,AB= AC,ABC=ACB=45,四边形 ADEF是正方形, AD= AF,DAF= 90,BAD=BAC +DAC,CAF=DAF+DAC,在BAD和CAF中, ,BADCAF (SAS),BD= CF,BD= BCCD,CF= BC+CD;解:【应用】BAC= 90,AB= AC,ABC=ACB=45,四边形ADEF是正方形,AD= AF,DAF= 90,BAC=DAF,BAD=CAF,在BAD和CAF中,BADCAF (SAS),BD=CF,ACF=ABD= 180- 45= 135,,FCD=ACF-ACB = 90,FC

    21、D为直角三角形, ,CD= BC+ BD, CD = BC+CF= 2+1=3, ,正方形ADEF中,O为DF中点, ,故答案为: 【考点】本题是四边形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,正方形的性质,直角三角形斜边中线的性质等知识点,解题的关键是能够综合运用运用有关的知识解决问题2、(1)FG=BD,FGBC;(2)补全图形见解析;结论仍然成立,理由见解析;(3)BDF的面积为或【解析】【分析】(1)根据等腰直角三角形的性质以及中位线定理可得结果;(2)根据题意画出图形即可;根据旋转的性质证明ABDACE,结合中位线定理证明结论;(3)分两种情况进行讨论:当点D在

    22、点B的左侧时;当点D在点C的右侧时,分别画出图形结合等边三角形的性质解答【详解】(1)BAC90,ABAC,点D是BC的中点,ADBC,ADBDCD,ABCACB45,F,G分别是DE,CD的中点,FGAD,FGAD,FGBD,FGBC,故答案为:FGBD,FGBC;(2)补全图形如图所示;结论仍然成立,理由如下:如图2,连接CE,把AD绕点A逆时针旋转90得到AE,BACDAE90,ADAE,BADCAE,又ABAC,ABDACE(SAS),CEBD,ACEBACB45,DCE90,F,G分别是DE,CD的中点,FGCEBD,FGCE,FGBC;(3)当点D在点B的左侧时,如图31中,作AM

    23、BC于M,连接FG,BAC90,ABAC,AMBC,BC2,BMCMAMBC1,BAMCAM45,ADAE,DAE90,点F是DE中点,EAFCAM45,AFFDEF,AFC是等边三角形,AFACFC,FACAFCACF60,CAE15BAD,ADMABCBAD30,DMAM,BDDMBM,由(2)的结论可得:FGBC,FGBD,BDF的面积;当点D在点C的右侧时,如图32中,作AMBC于M,连接FG,BAC90,ABAC,AMBC,BC2,BMCMAMBC1,BAMCAM45,ADAE,DAE90,点F是DE中点,EAFCAM45,AFFDEF,DAF45,AFC是等边三角形,AFACFC,

    24、FACAFCACF60,CADCAFDAF15,ADMACBCAD30,DMAM,BDDM+BM1,由(2)的结论可得:FGBC,FGBD,BDF的面积综上所述:BDF的面积为或【考点】本题考查了等腰三角形的性质,旋转的性质,等边三角形的性质以及全等三角形的判定与性质,熟练掌握以上性质定理是解本题的关键3、 (1)见解析(2)见解析【解析】【分析】(1)画一个底为3,高为5的平行四边形即可;(2)画一个对角线分别为3,5的菱形AEBF即可(1)解:如图1中,平行四边形ACBD即为所求(2)解:如图2中,菱形AEBF即为所求【考点】本题考查作图-旋转变换,轴对称变换,特殊四边形等知识,解题的关键

    25、是理解题意,学会利用数形结合的思想解决问题4、(1)证明见解析(2)-1 【解析】【分析】(1)先由旋转的性质得AE=AB,AF=AC,EAF=BAC,则EAF+BAF=BAC+BAF,即EAB=FAC,利用AB=AC可得AE=AF,得出ACFABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,ACDE,根据等腰三角形的性质得AEB=ABE,根据平行线得性质得ABE=BAC=45,所以AEB=ABE=45,于是可判断ABE为等腰直角三角形,所以BE=AC=,于是利用BD=BEDE求解【详解】(1)AEF是由ABC绕点A按顺时针方向旋转得到的,AE=AB,AF=AC,E

    26、AF=BAC,EAF+BAF=BAC+BAF,即EAB=FAC,在ACF和ABE中,ACFABEBE=CF.(2)四边形ACDE为菱形,AB=AC=1,DE=AE=AC=AB=1,ACDE,AEB=ABE,ABE=BAC=45,AEB=ABE=45,ABE为等腰直角三角形,BE=AC=,BD=BEDE=考点:1旋转的性质;2勾股定理;3菱形的性质5、(1)AM=DF;(2),证明见解析;(3)1或5【解析】【分析】(1)可通过证明,即可利用全等三角形的性质得出结论;(2)通过作辅助线,构造等边三角形DMN,再通过全等证明出DF=EN,利用等边三角形得出DN=DM,DA=DB,求出AM=BN,即

    27、可证明题中三线段之间的关系;(3)分别讨论当E点在线段BD和DB的延长线上两种情况,利用全等以及等边三角形的相关结论即可求出DF的长【详解】解:(1)AM=DF;理由:菱形 ABCD 中, ABC=120 ,可得BCD和ABD都是等边三角形;BD=BA, DBA=60,又由旋转可知ME=MF,EMF= 60,得MEF也是等边三角形,EF=EM,MEF= 60,MEA=FED,可证:;AM=DF(2)结论:证明:过点作交延长线于.四边形是菱形,是等边三角形,是等边三角形,是等边三角形,即:,.(3)1或5当E点在线段BD上时,由(2)知,AB=6,BD=AD=6,BD=2BE,AD=3AM,BE=3,AM=2,DF=5;当E点在线段DB的延长线上时,如图所示:作MNAB与DE交于点N,MDN=DAB=60,利用平行线的性质可得出DMN=60,则DMN是等边三角形,MN=MD,又由DMN=EMF,EMN=FMD,ME=MF,DF=ENEN=EB-BN= BD- AM=3- AD=3- 2= 1;综上可得:DF的长为1或5【考点】本题涉及到了几何图形的动点问题,综合考查了等边三角形的判定与性质、菱形的性质、全等三角形的判定与性质、旋转的性质等内容,要求学生理解相关概念与性质,能利用相关知识进行边角之间的转化,本题难点在于作辅助线,考查了学生的综合分析的能力,对学生推理分析能力有较高要求

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版九年级数学上册第二十三章旋转必考点解析试卷(含答案详解版).docx
    链接地址:https://www.ketangku.com/wenku/file-869378.html
    相关资源 更多
  • 2012高一物理课件 第四章 机械能和能源 (粤教版必修2).ppt2012高一物理课件 第四章 机械能和能源 (粤教版必修2).ppt
  • 2012高一物理课件 7.10 能量守恒定律与能源 (人教版必修2).ppt2012高一物理课件 7.10 能量守恒定律与能源 (人教版必修2).ppt
  • 奇数和偶数(专项复习)六年级下册数学第一轮总复习人教版.docx奇数和偶数(专项复习)六年级下册数学第一轮总复习人教版.docx
  • 2012高一物理课件 6.4 超重与失重 24(鲁科版必修1).ppt2012高一物理课件 6.4 超重与失重 24(鲁科版必修1).ppt
  • 2012高一物理课件 6.4 超重与失重 23(鲁科版必修1).ppt2012高一物理课件 6.4 超重与失重 23(鲁科版必修1).ppt
  • 2012高一物理课件 6.4 超重与失重 20(鲁科版必修1).ppt2012高一物理课件 6.4 超重与失重 20(鲁科版必修1).ppt
  • 2012高一物理课件 6.4 超重与失重 19(鲁科版必修1).ppt2012高一物理课件 6.4 超重与失重 19(鲁科版必修1).ppt
  • 奇偶性与不等式讲义-2022届高三数学二轮复习 WORD版含答案.docx奇偶性与不等式讲义-2022届高三数学二轮复习 WORD版含答案.docx
  • 2012高一物理课件 6.4 超重与失重 13(鲁科版必修1).ppt2012高一物理课件 6.4 超重与失重 13(鲁科版必修1).ppt
  • 2012高一物理课件 6.3 牛顿第三定律 7(鲁科版必修1).ppt2012高一物理课件 6.3 牛顿第三定律 7(鲁科版必修1).ppt
  • 2012高一物理课件 6.3 牛顿第三定律 6(鲁科版必修1).ppt2012高一物理课件 6.3 牛顿第三定律 6(鲁科版必修1).ppt
  • 2012高一物理课件 6.3 牛顿第三定律 5(鲁科版必修1).ppt2012高一物理课件 6.3 牛顿第三定律 5(鲁科版必修1).ppt
  • 夺油争上产 安全系心中.docx夺油争上产 安全系心中.docx
  • 2012高一物理课件 6.3 牛顿第三定律 4(鲁科版必修1).ppt2012高一物理课件 6.3 牛顿第三定律 4(鲁科版必修1).ppt
  • 2012高一物理课件 6.3 牛顿第三定律 1(鲁科版必修1).ppt2012高一物理课件 6.3 牛顿第三定律 1(鲁科版必修1).ppt
  • 2012高一物理课件 6.2 牛顿第二定律 9(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 9(鲁科版必修1).ppt
  • 夺分锦囊06 2023年中考历史结论汇总 -【临考夺分手册】2023年中考历史考前冲刺锦囊.docx夺分锦囊06 2023年中考历史结论汇总 -【临考夺分手册】2023年中考历史考前冲刺锦囊.docx
  • 2012高一物理课件 6.2 牛顿第二定律 7(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 7(鲁科版必修1).ppt
  • 2012高一物理课件 6.2 牛顿第二定律 6(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 6(鲁科版必修1).ppt
  • 2012高一物理课件 6.2 牛顿第二定律 4(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 4(鲁科版必修1).ppt
  • 2012高一物理课件 6.2 牛顿第二定律 3(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 3(鲁科版必修1).ppt
  • 2012高一物理课件 6.2 牛顿第二定律 25(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 25(鲁科版必修1).ppt
  • 2012高一物理课件 6.2 牛顿第二定律 19(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 19(鲁科版必修1).ppt
  • 2012高一物理课件 6.2 牛顿第二定律 18(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 18(鲁科版必修1).ppt
  • 夸将军.docx夸将军.docx
  • 2012高一物理课件 6.2 牛顿第二定律 17(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 17(鲁科版必修1).ppt
  • 2012高一物理课件 6.2 牛顿第二定律 16(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 16(鲁科版必修1).ppt
  • 2012高一物理课件 6.2 牛顿第二定律 14(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 14(鲁科版必修1).ppt
  • 头部机械性伤害的应急处理.docx头部机械性伤害的应急处理.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1