分享
分享赚钱 收藏 举报 版权申诉 / 30

类型人教版九年级数学上册第二十四章圆专项测评练习题(解析版).docx

  • 上传人:a****
  • 文档编号:869549
  • 上传时间:2025-12-17
  • 格式:DOCX
  • 页数:30
  • 大小:788.93KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    人教版 九年级 数学 上册 第二 十四 专项 测评 练习题 解析
    资源描述:

    1、人教版九年级数学上册第二十四章圆专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知点在上则下列命题为真命题的是()A若半径平分弦则四边形是平行四边形B若四边形是平行四边形则C若则弦平分半径D若弦

    2、平分半径则半径平分弦2、如图,O是RtABC的外接圆,ACB90,过点C作O的切线,交AB的延长线于点D设A,D,则()AB+90C2+90D+2903、下列说法中,正确的是()A长度相等的弧是等弧B平分弦的直径垂直于弦,并且平分弦所对的两条弧C经过半径并且垂直于这条半径的直线是圆的切线D在同圆或等圆中90的圆周角所对的弦是这个圆的直径4、如图,点在上,则()ABCD5、如图,AB是O的直径,C,D是O上位于AB异侧的两点下列四个角中,一定与ACD互余的角是()AADCBABDCBACDBAD6、如图,在中,以点为圆心,为半径的圆与相交于点,则的长为()A2BC3D7、一个点到圆的最大距离为1

    3、1 cm,最小距离为5 cm,则圆的半径为()A16cm或6 cmB3cm或8 cmC3 cmD8 cm8、如图,点O是ABC的内心,若A70,则BOC的度数是()A120B125C130D1359、如图,O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与O的位置关系是()A在O内B在O上C在O外D以上都有可能10、如图,正方形的边长为4,以点为圆心,为半径画圆弧得到扇形(阴影部分,点在对角线上)若扇形正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()AB1CD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,四边形是的外

    4、切四边形,且,则四边形的周长为_2、如图,AB是O的直径,弦CDAB于点E若AB10,AE1,则弦CD的长是_3、如图,正五边形ABCDE内接于O,点F在上,则CFD_度4、在O中,若弦垂直平分半径,则弦所对的圆周角等于_5、如图所示,AB、AC为O的两条弦,延长CA到点D,AD=AB,若ADB=35,则BOC=_三、解答题(5小题,每小题10分,共计50分)1、如图,正五边形内接于,为上的一点(点不与点重合),求的余角的度数2、如图,在ABC中,ABAC,BAC与ABC的角平分线相交于点E,AE的延长线交ABC的外接圆于点D,连接BD(1)求证:BADDBC;(2)证明:点B、E、C在以点D

    5、为圆心的同一个圆上;(3)若AB5,BC8,求ABC内心与外心之间的距离3、问题提出(1)如图,在ABC中,ABAC10,BC12,点O是ABC的外接圆的圆心,则OB的长为 问题探究(2)如图,已知矩形ABCD,AB4,AD6,点E为AD的中点,以BC为直径作半圆O,点P为半圆O上一动点,求E、P之间的最大距离;问题解决(3)某地有一块如图所示的果园,果园是由四边形ABCD和弦CB与其所对的劣弧场地组成的,果园主人现要从入口D到上的一点P修建一条笔直的小路DP已知ADBC,ADB45,BD120米,BC160米,过弦BC的中点E作EFBC交于点F,又测得EF40米修建小路平均每米需要40元(小

    6、路宽度不计),不考虑其他因素,请你根据以上信息,帮助果园主人计算修建这条小路最多要花费多少元?4、已知四边形内接于O,垂足为E,垂足为F,交于点G,连接(1)求证:;(2)如图1,若,求O的半径;(3)如图2,连接,交于点H,若,试判断是否为定值,若是,求出该定值;若不是,说明理由5、如图,已知点在上,点在外,求作一个圆,使它经过点,并且与相切于点(要求写出作法,不要求证明)-参考答案-一、单选题1、B【解析】【分析】根据圆的有关性质、垂径定理及其推论、特殊平行四边形的判定与性质依次对各项判断即可【详解】A半径平分弦,OBAC,AB=BC,不能判断四边形OABC是平行四边形,假命题;B四边形是

    7、平行四边形,且OA=OC,四边形是菱形,OA=AB=OB,OABC,OAB是等边三角形,OAB=60,ABC=120,真命题;C,AOC=120,不能判断出弦平分半径,假命题;D只有当弦垂直平分半径时,半径平分弦,所以是假命题,故选:B【考点】本题主要考查命题与证明,涉及垂径定理及其推论、菱形的判定与性质、等边三角形的判定与性质等知识,解答的关键是会利用所学的知识进行推理证明命题的真假2、C【解析】【分析】连接OC, 由BOC是AOC的外角,可得BOC2A2,由CD是O的切线,可求OCD90,可得D902即可【详解】连接OC,如图,O是RtABC的外接圆,ACB90,AB是直径,A,OA=OC

    8、,BOC是AOC的外角,A=ACO,BOC=A+ACO2A2,CD是O的切线,OCCD,OCD90,D90BOC902,2+90故选:C【考点】本题考查圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质,掌握圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质3、D【解析】【分析】根据切线的判定,圆的知识,可得答案【详解】解:A、在等圆或同圆中,长度相等的弧是等弧,故A错误;B、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故B错误;C、经过半径的外端并且垂直于这条半径的直线是圆的切线,故C错误;D、在同圆或等圆中90的圆周角所对的弦是这个圆的直径,故D正

    9、确;故选D【考点】本题考查了切线的判定及圆的知识,利用圆的知识及切线的判定是解题关键4、D【解析】【分析】先证明再利用等弧的性质及圆周角定理可得答案【详解】解: 点在上, 故选:【考点】本题考查的两条弧,两个圆心角,两条弦之间的关系,圆周角定理,等弧的概念与性质,掌握同弧或等弧的概念与性质是解题的关键5、D【解析】【分析】由圆周角定理得出ACBACD+BCD90,BCDBAD,得出ACD+BAD90,即可得出答案.【详解】解:连接BC,如图所示:AB是O的直径,ACBACD+BCD90,BCDBAD,ACD+BAD90,故选:D.【考点】此题考查了圆周角定理:同弧所对的圆周角相等,直径所对的圆

    10、周角是直角,正确掌握圆周角定理是解题的关键.6、C【解析】【分析】过C点作CHAB于H点,在ABC、CBH中由分别求出BC和BH,再由垂径定理求出BD,进而AD=AB-BD即可求解【详解】解:过C点作CHAB于H点,如下图所示:ACB=90,A=30,ABC、CBH均为30、60、90直角三角形,其三边之比为,RtABC中,RtBCH中,由垂径定理可知:,故选:C【考点】本题考查了直角三角形30角所对直角边等于斜边的一半,垂径定理等知识点,熟练掌握垂径定理是解决本题的关键7、B【解析】【分析】最大距离与最小距离的和是直径;当点P在圆外时,点到圆的最大距离与最小距离的差是直径,由此得解【详解】当

    11、点P在圆内时,最近点的距离为5cm,最远点的距离为11cm,则直径是16cm,因而半径是8cm;当点P在圆外时,最近点的距离为5cm,最远点的距离为11cm,则直径是6cm,因而半径是3cm;故选B【考点】本题考查了点与圆的位置关系,利用线段的和差得出直径是解题关键,分类讨论,以防遗漏8、B【解析】【分析】利用内心的性质得OBCABC,OCBACB,再根据三角形内角和计算出OBC+OCB55,然后再利用三角形内角和计算BOC的度数【详解】解:O是ABC的内心,OB平分ABC,OC平分ACB,OBCABC,OCBACB,OBC+OCB(ABC+ACB)(180A)(18070)55,BOC180

    12、(OBC+OCB)18055125故选:B【考点】此题主要考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角9、A【解析】【详解】如图,连接OA,则在直角OMA中,根据勾股定理得到OA=点A与O的位置关系是:点A在O内 故选A 10、D【解析】【分析】根据题意,扇形ADE中弧DE的长即为圆锥底面圆的周长,即通过计算弧DE的长,再结合圆的周长公式进行计算即可得解【详解】正方形的边长为4是正方形的对角线圆锥底面周长为,解得该圆锥的底面圆的半径是,故选:D【考点】本题主要考查了扇形的弧长公式,圆的周长公式,正方形的性质以及圆锥的相关知识点,熟练掌

    13、握弧长公式及圆的周长公式是解决本题的关键二、填空题1、48【解析】【分析】根据切线长定理得到AE=AH,BE=BF,CF=CG,DH=DG,得到AD+BC=AB+CD=24,根据四边形的周长公式计算,得到答案【详解】解:四边形ABCD是O的外切四边形,AE=AH,BE=BF,CF=CG,DH=DG,AD+BC=AB+CD=24,四边形ABCD的周长=AD+BC+AB+CD=24+24=48,故答案为:48【考点】本题考查了切线长定理,掌握从圆外一点引圆的两条切线,它们的切线长相等是解题的关键2、6【解析】【分析】连接OC,根据勾股定理求出CE,根据垂径定理计算即可【详解】连接OC,AB是O的直

    14、径,弦CDAB,CD2CE,OEC90,AB10,AE1,OC5,OE514,在RtCOE中,CE3,CD2CE6,故答案为6【考点】本题考查了垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键3、36【解析】【分析】连接OC,OD求出COD的度数,再根据圆周角定理即可解决问题【详解】如图,连接OC,OD五边形ABCDE是正五边形,COD=72,CFD=COD=36,故答案为:36【考点】本题考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识4、120或60【解析】【分析】根据弦垂直平分半径及OB=OC证明四边形OBAC是矩形,再根据OB=OA

    15、,OE=求出BOE=60,即可求出答案.【详解】设弦垂直平分半径于点E,连接OB、OC、AB、AC,且在优弧BC上取点F,连接BF、CF,OB=AB,OC=AC,OB=OC,四边形OBAC是菱形,BOC=2BOE,OB=OA,OE=,cosBOE=,BOE=60,BOC=BAC=120,BFC=BOC=60, 弦所对的圆周角为120或60,故答案为:120或60.【考点】此题考查圆的基本知识点:圆的垂径定理,同圆的半径相等的性质,圆周角定理,菱形的判定定理及性质定理,锐角三角函数,熟练掌握圆的各性质定理是解题的关键.5、140【解析】【分析】在等腰中,根据三角形的外角性质可求出外角的度数;而是

    16、同弧所对的圆周角和圆心角,可根据圆周角和圆心角的关系求出的度数【详解】ABD中,AB=AD,则: 故答案为【考点】考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.三、解答题1、54【解析】【分析】连接OC,OD求出COD的度数,再根据圆周角定理即可解决问题【详解】如图,连接五边形是正五边形,90-36=54,的余角的度数为54【考点】本题考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型2、 (1)见解析(2)见解析(3)【解析】【分析】(1)根据同弧所对的圆周角相等,可得,再由平分,得,从而证明结论;(2)由,得,再根据,得,从而有,

    17、即可证明;(3)由题意知为内心,为外心,设,则,可求出的长,再根据勾股定理求出的长,而,从而得出答案(1)解:证明:平分,又,;(2)解:证明:,平分,连接,平分,点、在以点为圆心的同一个圆上;(3)解:如图:,在中,在中,设,则,即,解得:,即,为直径,在中,为角平分线的交点,为内心,为内心与外心之间的距离,内心与外心之间的距离为【考点】本题是圆的综合题,主要考查了圆周角定理,三角形的内心和外心的性质,圆的定义,勾股定理等知识,解题的关键是利用(2)中证明结论是解决问题(3)的关键3、(1);(2)E、P之间的最大距离为7;(3)修建这条小路最多要花费元【解析】【分析】(1)若AO交BC于K

    18、,则AK8,在RtBOK中,设OBx,可得x262+(8x)2,解方程可得OB的长;(2)延长EO交半圆于点P,可求出此时E、P之间的最大距离为OE+OP的长即可;(3)先求出所在圆的半径,过点D作DGBC,垂足为G,连接DO并延长交于点P,则DP为入口D到上一点P的最大距离,求出DP长即可求出修建这条小路花费的最多费用【详解】(1)如图,若AO交BC于K,点O是ABC的外接圆的圆心,ABAC,AKBC,BK,AK,在RtBOK中,OB2BK2+OK2,设OBx,x262+(8x)2,解得x,OB;故答案为:(2)如图,连接EO,延长EO交半圆于点P,可求出此时E、P之间的距离最大,在是任意取

    19、一点异于点P的P,连接OP,PE,EPEO+OPEO+OPEP,即EPEP,AB4,AD6,EO4,OPOC,EPOE+OP7,E、P之间的最大距离为7(3)作射线FE交BD于点M,BECE,EFBC,是劣弧,所在圆的圆心在射线FE上,假设圆心为O,半径为r,连接OC,则OCr,OEr40,BECE,在RtOEC中,r2802+(r40)2,解得:r100,OEOFEF60,过点D作DGBC,垂足为G,ADBC,ADB45,DBC45,在RtBDG中,DGBG,在RtBEM中,MEBE80,MEOE,点O在BDC内部,连接DO并延长交于点P,则DP为入口D到上一点P的最大距离,在上任取一点异于

    20、点P的点P,连接OP,PD,DPOD+OPOD+OPDP,即DPDP,过点O作OHDG,垂足为H,则OHEG40,DHDGHGDGOE60,,DPOD+r,修建这条小路最多要花费40元【考点】本题主要考查了圆的性质与矩形性质的综合运用,熟练掌握相关方法是解题关键.4、 (1)证明见详解(2)(3)为定值,【解析】【分析】(1)由,可证明,由圆周角定理可知,可证明,再借助对顶角相等可知,进而证明,即可推导出;(2)由(1)可知,AC为DG的垂直平分线,即有,连接OA、OB、OC、OD,过点O作,垂足分别为M、N,利用垂径定理和圆周角定理推导, ,;再借助,可证明,进而得到,即可证明,即有;在中,

    21、利用勾股定理计算OC的长,即可得到O的半径;(3)过点H作,垂足分别为P、Q,过点D作于点K,由已知条件、三角函数函数及含30角的直角三角形的性质,先计算出,再根据,可得出,整理可得(1)证明:,;(2)解:由(1)可知,即AC为DG的垂直平分线,如图1,连接OA、OB、OC、OD,过点O作,垂足分别为M、N,则有,同理,即,在和中, ,在中,即圆O的半径为;(3)为定值,且,证明如下:如图2,过点H作,垂足分别为P、Q,过点D作于点K,即,且,在中,即有,即 ,【考点】本题主要考查了圆周角定理、垂径定理、等腰三角形的判定与性质、全等三角形的判定与性质、角平分线的性质及利用三角函数解直角三角形等知识,综合性较强,解题关键是熟练掌握相关知识并能够综合运用5、见解析【解析】【分析】先确定圆心,再确定圆的半径,画圆即可【详解】解:如图,连接、,作线段的垂直平分线交的延长线于一点,交点即为,以为圆心,或的长度为半径作圆,即为所求【考点】本题考查了确定圆的条件和相切两圆的性质,作图是难点,注:确定圆,即确定圆心和半径

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版九年级数学上册第二十四章圆专项测评练习题(解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-869549.html
    相关资源 更多
  • 任命后个人表态发言4篇 任命后个人表态发言三篇 任命后个人表态发言稿 任命后个人表态发言.docx任命后个人表态发言4篇 任命后个人表态发言三篇 任命后个人表态发言稿 任命后个人表态发言.docx
  • 任命后个人表态发言.docx任命后个人表态发言.docx
  • 任务阅读(阅读还原)期末复习专项练习10篇-2022-2023学年人教版英语九年级上册.docx任务阅读(阅读还原)期末复习专项练习10篇-2022-2023学年人教版英语九年级上册.docx
  • 任务阅读(阅读还原)期中复习专项练习10篇-2022-2023学年人教版英语七年级上册.docx任务阅读(阅读还原)期中复习专项练习10篇-2022-2023学年人教版英语七年级上册.docx
  • 任务阅读(阅读填空)期末复习专项练习10篇-2021-2022学年牛津译林英语七年级下册.docx任务阅读(阅读填空)期末复习专项练习10篇-2021-2022学年牛津译林英语七年级下册.docx
  • 任务突破练7 赏析环境——明辨类型,关注效果.docx任务突破练7 赏析环境——明辨类型,关注效果.docx
  • 任务突破练2 论证分析——关注论据判定,辨清论证思路.docx任务突破练2 论证分析——关注论据判定,辨清论证思路.docx
  • 任务突破练21 语用中的常备考点.docx任务突破练21 语用中的常备考点.docx
  • 任务突破练20 情境化的语言表达题.docx任务突破练20 情境化的语言表达题.docx
  • 任务突破练12 文言文选择题.docx任务突破练12 文言文选择题.docx
  • 任务三 尝试创作.docx任务三 尝试创作.docx
  • 任前集体廉政谈话会讲话提纲10篇.docx任前集体廉政谈话会讲话提纲10篇.docx
  • 任前廉政谈话表态发言最新.docx任前廉政谈话表态发言最新.docx
  • 价值量和社会劳动生产率题型专项讲练(以近三年高考真题为例).docx价值量和社会劳动生产率题型专项讲练(以近三年高考真题为例).docx
  • 仰望星空与脚踏实地.docx仰望星空与脚踏实地.docx
  • 仰望大树.docx仰望大树.docx
  • 仪表联锁系统管理制度.docx仪表联锁系统管理制度.docx
  • 仪表联锁系统管理.docx仪表联锁系统管理.docx
  • 仪表维护管理制度.docx仪表维护管理制度.docx
  • 仪表电工岗位操作规程.docx仪表电工岗位操作规程.docx
  • 仪表公司消防应急预案.docx仪表公司消防应急预案.docx
  • 仪控部岗位责任制.docx仪控部岗位责任制.docx
  • 仪器——2022年浙江省杭州市中考科学.docx仪器——2022年浙江省杭州市中考科学.docx
  • 以项目实践谈建筑施工项目的安全生产管理.docx以项目实践谈建筑施工项目的安全生产管理.docx
  • 以车抵押借款合同 .docx以车抵押借款合同 .docx
  • 以质量安全为核心 强化现场标准化管理.docx以质量安全为核心 强化现场标准化管理.docx
  • 以积极向上的态度涵养高尚师德.docx以积极向上的态度涵养高尚师德.docx
  • 以科学发展观指导铁路安全管理创新.docx以科学发展观指导铁路安全管理创新.docx
  • 以社会组织参与基层社会治理为主题的代表约见活动领导讲话.docx以社会组织参与基层社会治理为主题的代表约见活动领导讲话.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1