分享
分享赚钱 收藏 举报 版权申诉 / 25

类型人教版八年级数学上册第十一章三角形专项练习试题(含答案及解析).docx

  • 上传人:a****
  • 文档编号:877201
  • 上传时间:2025-12-17
  • 格式:DOCX
  • 页数:25
  • 大小:731.37KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    人教版 八年 级数 上册 第十一 三角形 专项 练习 试题 答案 解析
    资源描述:

    1、人教版八年级数学上册第十一章三角形专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABC中,点D是AB边上的中点,点E是BC边上的中点,若SDABC=12,则图中阴影部分的面积是()A6B4

    2、C3D22、长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为()A4B5C6D73、如图,则,则的大小是ABCD4、如图,AB和CD相交于点O,则下列结论正确的是()A12B23C34D155、如果一个多边形的内角和是外角和的5倍,那么这个多边形的边数是()A10B11C12D136、如图,ABCD,BED=61,ABE的平分线与CDE的平分线交于点F,则DFB=()A149B149.5C150D150.57、一个多边形除一个内角外其余内角的和为1510,则这个多边形对角线的条数是()A27B35C44D548、如果一个多边形

    3、内角和是外角和的4倍,那么这个多边形有()条对角线A20B27C35D449、三角形的重心是()A三角形三边的高所在直线的交点B三角形的三条中线的交点C三角形的三条内角平分线的交点D三角形三边中垂线的交点10、如图,在中,连接BC,CD,则的度数是()A45B50C55D80第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,E为ABC的BC边上一点,点D在BA的延长线上,DE交AC于点F,B46,C30,EFC70,则D_2、如图ab,12=75,则3+4_.3、如图,在ABC中,D为BC上的一点,E为AD上的一点,BE的延长线交AC于点F已知,(a,b为不小于2的

    4、整数),则的值是_4、如图,伸缩晾衣架利用的几何原理是四边形的_5、如图,在中,则x_三、解答题(5小题,每小题10分,共计50分)1、已知,点P在直线之间,连接(1)探究发现:(填空)如图1,过P作,_(已知)(_)_;(2)解决问题:如图2,延长至点分别平分交于点Q,试判断与存在怎样的数量关系,并说明理由;如图3,若,分别作分别平分,求的度数(直接写出结果)2、在四边形ABCD中,(1)如图,若,求出的度数;(2)如图,若的角平分线交AB于点E,且,求出的度数;(3)如图,若和的角平分线交于点E,求出的度数3、如图,直线,与,分别相交于点A,且,交直线于点(1)若1=58,求的度数;(2)

    5、若,求直线与的距离4、已知:a、b、c满足求:(1)a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由5、如图,AC,BD为四边形ABCD的对角线,ABC90,ABD+ADBACB,ADCBCD(1)求证:ADAC;(2)探求BAC与ACD之间的数量关系,并说明理由-参考答案-一、单选题1、C【解析】【分析】作交AB于点F,作交BC于点G,利用中点的性质即可求出的面积,同理可求出阴影部分面积.【详解】解:作交AB于点F,作交BC于点G,点D是AB边上的中点 点E是BC边上的中点所以阴影部分的面积为3.故选:C.【考点】本题考

    6、查了和中点有关的三角形的面积,灵活的利用中点的性质表示三角形的面积间的关系是解题的关键.2、B【解析】【分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.【详解】长度分别为5、3、4,能构成三角形,且最长边为5;长度分别为2、6、4,不能构成三角形;长度分别为2、7、3,不能构成三角形;长度分别为6、3、3,不能构成三角形;综上所述,得到三角形的最长边长为5故选:B.【考点】此题考查构成三角形的条件,三角形的三边关系,解题中运用不同情形进行讨论的方法,注意避免遗漏构成的情况.3、B【解析】【分析】依据三角形内角和定理,可得D=40,再根据平行线的性质,即可得到B=D=4

    7、0【详解】DEC=100,C=40,D=180-DEC-C=40,又ABCD,B=D=40,故选B【考点】本题考查了三角形内角和定理,平行线性质的应用,运用两直线平行,内错角相等是解题的关键4、A【解析】【分析】根据平行线的性质和对顶角的性质进行判断【详解】解:A、1与2是对顶角,12,本选项说法正确;B、AD与AB不平行,23,本选项说法错误;C、AD与CB不一定平行,34,本选项说法错误;D、CD与CB不平行,15,本选项说法错误;故选:A【考点】本题考查平行线的应用,熟练掌握平行线的性质和对顶角的意义与性质是解题关键5、C【解析】【分析】设多边形的边数为n,根据多边形外角和与内角和列式计

    8、算即可;【详解】解:设多边形的边数为n,根据题意可得:,化简得:,解得:;故选:C【考点】本题主要考查了多边形的内角和与外角和,结合一元一次方程求解是解题的关键6、B【解析】【分析】过点E作EGAB,根据平行线的性质可得“ABE+BEG=180,GED+EDC=180”,根据角的计算以及角平分线的定义可得“FBE+EDF=ABE+CDE)”,再依据四边形内角和为360结合角的计算即可得出结论【详解】如图,过点E作EGAB,ABCD,ABCDGE,ABE+BEG=180,GED+EDC=180,ABE+CDE+BED=360;又BED=61,ABE+CDE=299ABE和CDE的平分线相交于F,

    9、FBE+EDF=(ABE+CDE)=149.5,四边形的BFDE的内角和为360,BFD=360-149.5-61=149.5故选B【考点】本题考查了平行线的性质、三角形内角和定理以及四边形内角和为360,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键7、C【解析】【详解】设这个内角度数为x,边数为n,(n2)180x=1510,180n=1870+x,n为正整数,n=11,=44,故选C.点睛:此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.8、C【解析】【分析】根据多边形的内角和公式(n-2)180与外角和定理列出方程,然后求解,多边形对

    10、角线的条数可以表示成【详解】解:设这个多边形是n边形,根据题意得,(n-2)180=4360,解得n=1010(10-3)2=35(条)故选:C【考点】本题考查了多边形的内角和与外角和、方程的思想关键是记住内角和的公式与外角和的特征,及多边形对角线的条数公式9、B【解析】【分析】根据重心是三角形三边中线的交点,三角形三条高的交点是垂心,三角形三条角平分线的交点是三角形的内心,等知识点作出判断【详解】解:三角形三条高的交点是垂心,A选项不符合题意;三角形三条边中线的交点是三角形的重心,B选项符合题意;三角形三条内角平分线的交点是三角形的内心,C选项不符合题意;三角形三边中垂线的交点三角形的外心,

    11、D选项不符合题意故选:B【考点】本题考查了三角形的重心、内心与外心等知识,是基础题,熟记概念是解题的关键10、B【解析】【分析】连接AC并延长交EF于点M由平行线的性质得,再由等量代换得,先求出即可求出【详解】解:连接AC并延长交EF于点M,故选B【考点】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型二、填空题1、34#34度【解析】【分析】根据题意先求DAC,再依据ADF三角形内角和180可得答案【详解】解:B=46,C=30,DAC=B+C=76,EFC=70,AFD=70,D=180-DAC-AFD=34,故答案为:34【考点】本题考查三角形内角和定理及三角形一个外角等于

    12、不相邻的两个内角的和,解题的关键是掌握三角形内角和定理2、105【解析】【分析】根据平行线的性质和等量代换可以求得3+4=5+4,所以根据三角形内角和是180进行解答即可【详解】如图,ab,3=5,又1+2=75,1+2+4+5=180,5+4=105,3+4=5+4=105,故答案是:105【考点】本题考查了平行线的性质和三角形内角和定理解题的技巧性在于把求(3+4)的值转化为求同一三角形内的(5+4)的值3、【解析】【分析】利用同高的三角形面积之比等于底边之比进行三角形的面积转化即可完成求解【详解】解:,故答案为:【考点】本题考查了同高的三角形面积的转化,解题关键是理解同高的三角形面积之比

    13、等于对应的底边之比即可4、灵活性【解析】【分析】根据四边形的灵活性,可得答案【详解】我们常见的晾衣服的伸缩晾衣架,是利用了四边形的灵活性,故答案为灵活性【考点】此题考查多边形,解题关键在于掌握四边形的灵活性.5、130【解析】【分析】由可得,再由,即可求解;【详解】解:,故答案为:130【考点】本题主要考查三角形的内角和定理,掌握三角形的内角和定理并灵活应用是解本题的关键三、解答题1、 (1)180,两直线平行,同旁内角互补,360(2);=【解析】【分析】(1)读懂每步推理及推理的依据,即可完成填写;(2)两角关系为:;由ABCD、角平分线的性质及三角形外角的性质可得,再由(1)的结论即可得

    14、到两角的关系;延长AM交CD于H,设BAM=,MDN=,由平行线的性质及(1)的结论可得B+2=80,B+2=180,从而可得=40;再由ABCD及三角形外角的性质可得AMD=MHD+=180+,从而可求得结果(1)(1)如图1,过P作,180(已知)(两直线平行,同旁内角互补)360;故答案为:180;两直线平行,同旁内角互补;360(2)分别平分,由(1)知如图3,延长AM交CD于H设BAM=,MDN=AM、DM分别平分PAB、CDNPAM=BAM=,MDH=MDN=BNAP,DNPCB+2=180,C+2=180B+2+C+2=360由(1)结论及APC=1002+C=360APC=26

    15、0B+2=100B+2(B+2)=80即=40ABCDMHD=180AMD=MHD+=180+=180()=140 即的度数为【考点】本题主要考查了平行线的性质、三角形外角的性质与角平分线的性质等知识,构造适当的辅助线是解决本题后两问的关键,也是本题的难点2、 (1)(2)(3)【解析】【分析】(1)利用四边形内角和进行角的计算即可;(2)利用四边形内角和及角平分线的计算得出,再由三角形外角的性质求解即可;(3)利用角平分线得出,结合三角形内角和定理即可得出结果(1)解:四边形的内角和是360,(2),CE平分(3)BE,CE分别平分和,在中,【考点】题目主要考查四边形内角和及平行线的性质,角

    16、平分线的定义,三角形内角和定理等,理解题意,熟练掌握运用这些知识点是解题关键3、 (1)32(2)【解析】【分析】(1)先求出ABC,再利用平行线的性质求解即可;(2)利用等面积法即可求解(1),BAC=90,1=58,ABC=90-58=32,2=ABC=32(2)如图,过点A作ADBC,垂足为D所以线段AD的长度等于a与b之间的距离,因为ABAC所以 ABAC=BCAD,所以AD= ,所以a与b的距离为 【考点】本题考查了垂直的定义、直角三角形两个锐角互余,平行线的性质、三角形的面积公式等内容,解题关键是牢记相关概念与性质4、 (1),(2)能构成三角形,周长为【解析】【分析】(1)根据非

    17、负数之和等于零,则每个非负数等于零,分别建立方程求解即可;(2)先比较长三边的大小,再用较小两边之和与最大边比较即可判断能够构成三角形;然后计算三角形的周长即可(1)解:,a、b、c满足,解得,;(2)解:,即,能构成三角形,三角形的周长【考点】本题考查了非负数的性质,二次根式有意义的条件和构成三角形的条件,解题的关键是根据非负数之和等于零的条件分别建立方程和如何判定三边能否构成三角形5、(1)见解析;(2)BAC2ACD;理由见解析.【解析】【分析】(1)利用直角三角形的两锐角互余、三角形的内角和定理、以及角的和差即可得;(2)先根据直角三角形的两锐角互余可得,再由题(1)的结论和推出,联立化简求解即可得.【详解】(1)在中,在中,即;(2),理由如下:由题(1)知,.【考点】本题考查了直角三角形的两锐角互余、三角形的内角和定理、以及角的和差,熟记三角形的内角和定理、直角三角形的性质是解题关键.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版八年级数学上册第十一章三角形专项练习试题(含答案及解析).docx
    链接地址:https://www.ketangku.com/wenku/file-877201.html
    关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1