分享
分享赚钱 收藏 举报 版权申诉 / 31

类型人教版八年级数学上册第十二章全等三角形同步训练练习题(含答案解析).docx

  • 上传人:a****
  • 文档编号:877375
  • 上传时间:2025-12-17
  • 格式:DOCX
  • 页数:31
  • 大小:1.11MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    人教版 八年 级数 上册 第十二 全等 三角形 同步 训练 练习题 答案 解析
    资源描述:

    1、八年级数学上册第十二章全等三角形同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、 “经过已知角一边上的一点作“个角等于已知角”的尺规作图过程如下:已知:如图(1),AOB和OA上一点C求作:一个角

    2、等于AOB,使它的顶点为C,一边为CA作法:如图(2),(1)在0A上取一点D(ODOC),以点O为圆心,OD长为半径画弧,交OB于点E;(2)以点C为圆心,OD长为半径画弧,交CA于点F,以点F为圆心,DE长为半径画弧,两弧交于点C;(3)作射线CC所以CCA就是所求作的角此作图的依据中不含有()A三边分别相等的两个三角形全等B全等三角形的对应角相等C两直线平行同位角相等D两点确定一条直线2、如图,要使,直接利用三角形全等的判定方法是AAASBSASCASADSSS3、如图,点在边上,则下列结论中一定成立的是()ABCD4、如图,在OAB和OCD中,OA=OB,OC=OD,OAOC,AOB=

    3、COD=40,连接AC,BD交于点M,连接OM,下列结论:AOCBOD;AC=BD;AMB=40;MO平分BMC其中正确的个数为()A4B3C2D15、如图,RtACB中,ACB90,ABC的角平分线AD、BE相交于点P,过P作PFAD交BC的延长线于点F,交AC于点H,则下列结论:APB135;BFBA;PHPD;连接CP,CP平分ACB,其中正确的是()ABCD6、如图,OB平分AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF若添加下列条件中的某一个就能使DOEFOE,你认为要添加的那个条件是()AOD=OEBOE=OFCODE =OED

    4、DODE=OFE7、如图,在中,的平分线交于点E,于点D,若的周长为12,则的周长为()A9B8C7D68、如图,在RtABC中,ABC=90,AB=6,BC=8,点E是ABC的内心,过点E作EFAB交AC于点F,则EF的长为()ABCD9、下列说法正确的是()A形状相同的两个三角形全等B面积相等的两个三角形全等C完全重合的两个三角形全等D所有的等边三角形全等10、如图,在和中,则()A30B40C50D60第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,的三边 的长分别为,其三条角平分线交于点,则=_2、如图,点B、E、C、F在同一条直线上,ABDE,ABDE,

    5、AD,BF10,BC6,则EC_3、如图,PMOA,PNOB,BOC30,PMPN,则AOB_4、如图所示,在中,D是的中点,点A、F、D、E在同一直线上请添加一个条件,使(不再添其他线段,不再标注或使用其他字母),并给出证明你添加的条件是_5、如图,点B、C、E三点在同一直线上,且ABAD,ACAE,BCDE,若,则3_三、解答题(5小题,每小题10分,共计50分)1、在中,BE,CD为的角平分线,BE,CD交于点F(1)求证:;(2)已知如图1,若,求CE的长;如图2,若,求的大小2、在中,D为BC延长线上一点,点E为线段AC,CD的垂直平分线的交点,连接EA,EC,ED(1)如图1,当时

    6、,则_;(2)当时,如图2,连接AD,判断的形状,并证明;如图3,直线CF与ED交于点F,满足P为直线CF上一动点当的值最大时,用等式表示PE,PD与AB之间的数量关系为_,并证明3、如图,已知射线AB与直线CD交于点O,OF平分BOC,OGOF于O,AEOF,且A=30(1)求DOF的度数;(2)试说明OD平分AOG4、如图,已知,垂足分别为A,D,求证:125、如图,在四边形ABCD中,BCBA,AD=CD,BD平分ABC,求证:A+C=180-参考答案-一、单选题1、C【解析】【分析】根据题意知,作图依据有全等三角形的判定定理SSS,全等三角形的性质和两点确定一条直线,直接判断即可【详解

    7、】解:由题意可得:由全等三角形的判定定理SSS可以推知EODGCF,故A正确;结合该全等三角形的性质对应角相等,故B正确;作射线CG,利用两点确定一条直线,故D正确;故选:C【考点】本题考查作一个角等于已知角和三角形全等的判定与性质,解题关键是明确作图原理,准确进行判断2、B【解析】【分析】根据平行线性质得出ABD=CDB,再加上AB=DC,BD=DB,根据全等三角形的判定定理SAS即可推出ABDCDB,从而推出A=C,即可得出答案【详解】,在和中,故选B【考点】本题考查了平行线性质、全等三角形的判定与性质的应用,熟练掌握全等三角形的判定与性质定理是解题的关键.3、C【解析】【分析】根据全等三

    8、角形的性质可直接进行排除选项【详解】解:,AB=AD,BC=DE,AC=AE,B=ADE,C=E,ABD=ADB,故A、B、D都是错误的,C选项正确;故选C【考点】本题主要考查全等三角形的性质,熟练掌握全等三角形的性质是解题的关键4、A【解析】【分析】由题意易得AOC=BOD,然后根据三角形全等的性质及角平分线的判定定理可进行求解【详解】解:AOB=COD=40,AOD是公共角,COD+AOD=BOA+AOD,即AOC=BOD,OA=OB,OC=OD,AOCBOD(SAS),AC=BD,OAC=OBD,ODB=OCA,故正确;过点O作OEAC于点E,OFBD于点F,BD与OA相交于点H,如图所

    9、示:AHM=OHB,AMB=180-AHM-OAC,BOA=180-OHB-OBD,AMB=BOA=40,OEC=OFD=90,OC=OD,OCA=ODB,OECOFD(AAS),OE=OF,OM平分BMC,故正确;所以正确的个数有4个;故选A【考点】本题主要考查全等三角形的性质与判定及角平分线的判定定理,熟练掌握全等三角形的性质与判定及角平分线的判定定理是解题的关键5、D【解析】【分析】根据三角形内角和定理以及角平分线定义判断;根据全等三角形的判定和性质判断;根据角平分线的判定与性质判断【详解】解:在ABC中,ACB=90,BAC+ABC=90,又AD、BE分别平分BAC、ABC,BAD+A

    10、BE=(BAC+ABC)=(180-ACB)=(180-90)=45,APB=135,故正确BPD=45,又PFAD,FPB=90+45=135,APB=FPB,又ABP=FBP,BP=BP,ABPFBP(ASA),BAP=BFP,AB=FB,PA=PF,故正确在APH和FPD中,APH=FPD=90,PAH=BAP=BFP,PA=PF,APHFPD(ASA),PH=PD,故正确连接CP,如下图所示:ABC的角平分线AD、BE相交于点P,点P到AB、AC的距离相等,点P到AB、BC的距离相等,点P到BC、AC的距离相等,点P在ACB的平分线上,CP平分ACB,故正确,综上所述,均正确,故选:D

    11、【考点】本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理掌握相关性质是解题的关键6、D【解析】【分析】根据OB平分AOC得AOB=BOC,又因为OE是公共边,根据全等三角形的判断即可得出结果【详解】解:OB平分AOCAOB=BOC当DOEFOE时,可得以下结论:OD=OF,DE=EF,ODE=OFE,OED=OEFA答案中OD与OE不是DOEFOE的对应边,A不正确;B答案中OE与OF不是DOEFOE的对应边,B不正确;C答案中,ODE与OED不是DOEFOE的对应角,C不正确;D答案中,若ODE=OFE,在DOE和FOE中, DOEFOE(AAS)D答案正确故选:D【考

    12、点】本题考查三角形全等的判断,理解全等图形中边和角的对应关系是解题的关键7、D【解析】【分析】通过证明得到、,的周长,即可求解【详解】解:平分,又又(AAS)、,的周长为,故选:D,【考点】此题考查了全等三角形的判定与性质,解题的关键是掌握全等三角形的判定方法与性质,以及线段之间的等量关系8、A【解析】【分析】延长FE交BC于点D,作EGAB、作EHAC,由EFAC可证四边形BDEG是矩形,由角平分线可得ED=EH=EG、GAE=HAE,从而知四边形BDEG是正方形,再证GAEHAE、DCEHCE得AG=AH、CD=CH,设BD=BG=x,则AG=AH=6-x、CD=CH=8-x,由AC=10

    13、可得x=2,即BD=DE=2、AG=4,再证CDFCBA,可得,据此得出EF=DF-DE=.【详解】解:如图,延长FE交BC于点D,作EGAB于点G,作EHAC于点H,EFAB、ABC=90,FDAB,EGBC,四边形BDEG是矩形,AE平分BAC、CE平分ACB,ED=EH=EG,GAE=HAE,四边形BDEG是正方形,在GAE和HAE中,GAEHAE(AAS),AG=AH,同理DCEHCE,CD=CH,设BD=BG=x,则AG=AH=6x、CD=CH=8x,AC= = =10,6x8x=10,解得:x=2,BD=DE=BG=2,AG=4,DFAB,DCFBCA,即,解得:,则EF=DFDE

    14、=,故选A【考点】本题主要考查相似三角形的判定与性质、全等三角形的判定与性质及正方形的判定与性质,熟练掌握角平分线的性质和正方形的判定与性质、相似三角形的判定与性质是解题的关键9、C【解析】【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案【详解】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C【考点】此题主要考查了全等图形,关键是掌握全等形的概念10、D【解析】【分析】由题意可证,有,由三

    15、角形内角和定理得,计算求解即可【详解】解:ABC和ADC均为直角三角形在和中故选D【考点】本题考查了三角形全等,三角形的内角和定理解题的关键在于找出角度的数量关系二、填空题1、【解析】【分析】首先过点O作ODAB于点D,作OEAC于点E,作OFBC于点F,由OA,OB,OC是ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由ABC的三边AB、BC、CA长分别为40、50、60,即可求得SABO:SBCO:SCAO的值【详解】解:过点O作ODAB于点D,作OEAC于点E,作OFBC于点F,OA,OB,OC是ABC的三条角平分线,OD=OE=OF,ABC的三边AB、BC、CA长分

    16、别为40、50、60,SABO:SBCO:SCAO=(ABOD):(BCOF):(ACOE)=AB:BC:AC=40:50:60=故答案为:【考点】此题考查了角平分线的性质此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用2、2【解析】【分析】根据平行线的性质得出BDEF,即可利用ASA证明ABCDEF,根据全等三角形的性质得出BCEF6,即可根据线段的和差得解【详解】解:ABDE,BDEF,在ABC和DEF中,ABCDEF(ASA),BCEF,BF10,BC6,EF6,CFBFBC4,ECEFCF2,故答案为:2【考点】此题考查了全等三角形的判定与性质,利用ASA证明ABCDEF是解

    17、题的关键3、60或60度【解析】【分析】根据到角的两边距离相等的点在角的平分线上判断出OC平分AOB,再根据角平分线的定义可得AOB=2BOC【详解】解:PMOA,PNOB,PM=PN,OC平分AOB,AOB=2BOC,又BOC30,AOB =60故答案为:60【考点】本题考查了角平分线的判定,掌握角平分线的判定是解题的关键4、ED=FD(答案不唯一,E=CFD或DBE=DCF)【解析】【分析】根据三角形全等的判定方法SAS或AAS或ASA定理添加条件,然后证明即可【详解】解:D是的中点,BD=DC若添加ED=FD在BDE和CDF中,BDECDF(SAS);若添加E=CFD在BDE和CDF中,

    18、BDECDF(AAS);若添加DBE=DCF在BDE和CDF中,BDECDF(ASA);故答案为:ED=FD(答案不唯一,E=CFD或DBE=DCF)【考点】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键5、47【解析】【分析】根据“边边边”证明,再根据全等三角形的性质可得ABC1,BAC2,然后利用三角形的一个外角等于与它不相邻的两个内角和求出312,然后求解即可【详解】解:在ABC和ADE中,(SSS),ABC1,BAC2,3ABCBAC12,故答案为:47【考点】本题主要考查了全等三角形的判定与性质以及三角形的外角等于与它不相邻的两个内角和的性质,熟练掌握三角形全等

    19、的判定方法是解题关键三、解答题1、(1)证明见解析;(2)2.5;(3)100【解析】【分析】(1)由三角形内角和定理和角平分线得出的度数,再由三角形内角和定理可求出的度数,(2)在BC上取一点G使BG=BD,构造(SAS),再证明,即可得,由此求出答案;(3)延长BA到P,使AP=FC,构造(SAS),得PC=BC,再由三角形内角和可求,进而可得【详解】解:(1)、分别是与的角平分线,(2)如解(2)图,在BC上取一点G使BG=BD,由(1)得,在与中, ,(SAS), ,在与中,;,(3)如解(3)图,延长BA到P,使AP=FC,在与中, ,(SAS),又,又,【考点】本题考查的是角平分线

    20、的性质、全等三角形的判定与性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键2、(1)80;(2)是等边三角形;(3)【解析】【分析】(1)根据垂直平分线性质可知,再结合等腰三角形性质可得,利用平角定义和四边形内角和定理可得,由此求解即可;(2)根据(1)的结论求出即可证明是等边三角形;(3)根据利用对称和三角形两边之差小于第三边,找到当的值最大时的P点位置,再证明对称点与AD两点构成三角形为等边三角形,利用旋转全等模型即可证明,从而可知,再根据30直角三角形性质可知即可得出结论【详解】解:(1)点E为线段AC,CD的垂直平 分线的交点,在中,故答案为:(2)结论:是等边三角形证明:在

    21、中,由(1)得:,是等边三角形结论:证明:如解图1,取D点关于直线AF的对称点,连接、;,等号仅P、E、三点在一条直线上成立,如解图2,P、E、三点在一条直线上,由(1)得:,又,又,点D、点是关于直线AF的对称点,是等边三角形,是等边三角形,在和中, ,(SAS),在中,【考点】本题是三角形综合题,主要考查了等腰三角形、等边三角形的性质和判定,全等三角形性质和判定等知识点,解题关键是利用对称将转化为三角形三边关系找到P的位置,并证明对称点与AD两点构成三角形为等边三角形3、(1)150;(2)证明见解析【解析】【分析】(1)根据两直线平行,同位角相等可得,再根据角平分线的定义求出,然后根据平

    22、角等于列式进行计算即可得解;(2)先求出,再根据对顶角相等求出,然后根据角平分线的定义即可得解【详解】解:(1),平分,;(2),平分【考点】本题考查了平行线的性质,对顶角相等的性质,垂线的定义,(2)根据度数相等得到相等的角是关键4、见解析【解析】【分析】根据HL证明RtABC与RtDCB全等,再利用全等三角形的性质证明即可【详解】证明:,AD=90在RtABC和RtDCB中, RtABCRtDCB(HL)12【考点】此题考查全等三角形的判定和性质,关键是根据HL证明RtABC与RtDCB全等5、见解析【解析】【分析】先在线段BC上截取BE=BA,连接DE,根据BD平分ABC,可得ABD=EBD,根据,可判定ABDEBD,根据全等三角形的性质可得:AD=ED,A=BED再根据AD=CD,等量代换可得ED=CD,根据等边对等角可得:DEC=C由BED+DEC=180,可得A+C=180【详解】证明:在线段BC上截取BE=BA,连接DE,如图所示,BD平分ABC,ABD=EBD,在ABD和EBD中,ABDEBD(SAS),AD=ED,A=BEDAD=CD,ED=CD,DEC=CBED+DEC=180,A+C=180【考点】本题主要考查全等三角形的判定和性质,解决本题的关键是要熟练掌握全等三角形的判定和性质.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版八年级数学上册第十二章全等三角形同步训练练习题(含答案解析).docx
    链接地址:https://www.ketangku.com/wenku/file-877375.html
    相关资源 更多
  • 小升初基础知识填空题专项练习及答案【全国通用】.docx小升初基础知识填空题专项练习及答案【全国通用】.docx
  • 小升初基础知识填空题专项练习及答案【全优】.docx小升初基础知识填空题专项练习及答案【全优】.docx
  • 2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题三 第1讲 三角函数的图象与性质(共37张PPT).ppt2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题三 第1讲 三角函数的图象与性质(共37张PPT).ppt
  • 小升初基础知识填空题专项练习及完整答案(考点梳理).docx小升初基础知识填空题专项练习及完整答案(考点梳理).docx
  • 2014年高考数学(理科人教版)二轮专题整合突破复习课件:第二讲 填空题技法指导(共18张PPT).ppt2014年高考数学(理科人教版)二轮专题整合突破复习课件:第二讲 填空题技法指导(共18张PPT).ppt
  • 小升初基础知识填空题专项练习及完整答案(网校专用).docx小升初基础知识填空题专项练习及完整答案(网校专用).docx
  • 2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题五 第2讲 点、直线、平面之间的位置关系(共45张PPT).ppt2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题五 第2讲 点、直线、平面之间的位置关系(共45张PPT).ppt
  • 小升初基础知识填空题专项练习及完整答案(精品).docx小升初基础知识填空题专项练习及完整答案(精品).docx
  • 2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题九 第2讲 数形结合思想(共34张PPT).ppt2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题九 第2讲 数形结合思想(共34张PPT).ppt
  • 小升初基础知识填空题专项练习及完整答案(有一套).docx小升初基础知识填空题专项练习及完整答案(有一套).docx
  • 2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题三 第2讲 三角变换、平面向量与解三角形(共34张PPT).ppt2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题三 第2讲 三角变换、平面向量与解三角形(共34张PPT).ppt
  • 2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题七 第1讲 计数原理(共29张PPT).ppt2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题七 第1讲 计数原理(共29张PPT).ppt
  • 小升初基础知识填空题专项练习及完整答案(易错题).docx小升初基础知识填空题专项练习及完整答案(易错题).docx
  • 2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题一 第3讲 复数、框图、合情推理(共30张PPT).ppt2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题一 第3讲 复数、框图、合情推理(共30张PPT).ppt
  • 2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题一 第1讲 集合与常用逻辑用语(共32张PPT).ppt2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题一 第1讲 集合与常用逻辑用语(共32张PPT).ppt
  • 小升初基础知识填空题专项练习及完整答案(必刷).docx小升初基础知识填空题专项练习及完整答案(必刷).docx
  • 2014年高考数学(浙江专用 理)二轮专题突破课件:2.ppt2014年高考数学(浙江专用 理)二轮专题突破课件:2.ppt
  • 2014年高考数学(浙江专用 理)二轮专题突破课件:1.ppt2014年高考数学(浙江专用 理)二轮专题突破课件:1.ppt
  • 小升初基础知识填空题专项练习及完整答案(夺冠系列).docx小升初基础知识填空题专项练习及完整答案(夺冠系列).docx
  • 小升初基础知识填空题专项练习及完整答案(名校卷).docx小升初基础知识填空题专项练习及完整答案(名校卷).docx
  • 小升初基础知识填空题专项练习及完整答案(各地真题).docx小升初基础知识填空题专项练习及完整答案(各地真题).docx
  • 小升初基础知识填空题专项练习及完整答案(历年真题).docx小升初基础知识填空题专项练习及完整答案(历年真题).docx
  • 2014年高考数学(新课标理)题型全归纳课件:第九章 直线和圆的方程第4节.ppt2014年高考数学(新课标理)题型全归纳课件:第九章 直线和圆的方程第4节.ppt
  • 小升初基础知识填空题专项练习及完整答案(典优).docx小升初基础知识填空题专项练习及完整答案(典优).docx
  • 小升初基础知识填空题专项练习及完整答案(全国通用).docx小升初基础知识填空题专项练习及完整答案(全国通用).docx
  • 2014年高考数学(新课标理)题型全归纳课件:第四章 三角函数第3~4节.ppt2014年高考数学(新课标理)题型全归纳课件:第四章 三角函数第3~4节.ppt
  • 2014年高考数学(新课标理)题型全归纳课件:第十六章 选讲内容第2,3节.ppt2014年高考数学(新课标理)题型全归纳课件:第十六章 选讲内容第2,3节.ppt
  • 小升初基础知识填空题专项练习及完整答案【考点梳理】.docx小升初基础知识填空题专项练习及完整答案【考点梳理】.docx
  • 2014年高考数学(新课标理)题型全归纳课件:第十二章 计数原理第2节排列.ppt2014年高考数学(新课标理)题型全归纳课件:第十二章 计数原理第2节排列.ppt
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1