初升高数学全体系衔接专题09三角形(学生版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初升 数学 体系 衔接 专题 09 三角形 学生
- 资源描述:
-
1、专题09三角形专题综述课程要求三角形的“四心”有着明显的几何特征,这些几何特征与高中很多知识都有交汇,所以要熟练掌握它们的概念,理解对应的几何意义,为高中“四心”知识的综合奠定基础.1.四心的地位所谓三角形的“四心”,是指三角形的四种重要线段相交而成的四类特殊点.它们分别是三角形的内心、外心、垂心与重心,其中,外心与内心在初中课本中分别作出了叙述和介绍,而垂心与重心这两个概念是在高中加强的.在高中后续学习向量、立体几何、解析几何等内容时,垂心、重心、内心、外心都是不可缺少的知识点,在高考试卷中也屡屡出现,所以要清楚它们的基本概念,在三角形中用尺规作图的方法能够找到这四心,也就是要熟悉它们的几何
2、特征,正三角形四心(内心、重心、垂心、外心)合一,该点称为正三角形的中心.2.四心的概念与常用性质内心:三角形的三个内角的角平分线的交点,该点为三角形内切圆的圆心,内心到三角形的三边的距离相等;垂心:三角形的三条高的交点;通过作图可知锐角三角形的垂心在三角形内,直角三角形的垂心为直角顶点,钝角三角形的垂心在三角形外,该点分每条高线的两部分乘积相等;重心:三角形的三条中线的交点,该点到顶点的距离为到对边中点距离的2倍;外心:三角形的三条边的垂直平分线的交点,该交点为三角形外接圆的圆心,外心到三个顶点的距离相等.四心在高中阶段具有代数与几何的双重身份,需要给这四心的几何特征以代数形式,数形结合,以
3、形助数,以数解形.课程要求初中课程要求1、三角形及其性质2、全等三角形3、相似三角形4、直角三角形高中课程要求1、三角变换与解三角形的综合问题2、解三角形与平面向量结合3、以平面图形为背景的解三角形问题知识精讲高中必备知识点1:三角形的“四心”三角形是最重要的基本平面图形,很多较复杂的图形问题可以化归为三角形的问题.如图3.2-1 ,在三角形中,有三条边,三个角,三个顶点,在三角形中,角平分线、中线、高(如图3.2-2)是三角形中的三种重要线段. 三角形的三条中线相交于一点,这个交点称为三角形的重心.三角形的重心在三角形的内部,恰好是每条中线的三等分点.三角形的三条角平分线相交于一点,是三角形
4、的内心. 三角形的内心在三角形的内部,它到三角形的三边的距离相等.三角形的三条高所在直线相交于一点,该点称为三角形的垂心.锐角三角形的垂心一定在三角形的内部,直角三角形的垂心为他的直角顶点,钝角三角形的垂心在三角形的外部.过不共线的三点A、B、C有且只有一个圆,该圆是三角形ABC的外接圆,圆心O为三角形的外心.三角形的外心到三个顶点的距离相等,是各边的垂直平分线的交点.高中必备知识点2:几种特殊的三角形结论一:等腰三角形底边上三线(角平分线、中线、高线)合一.因而在等腰三角形ABC中,三角形的内心I、重心G、垂心H必然在一条直线上.结论二:正三角形三条边长相等,三个角相等,且四心(内心、重心、
5、垂心、外心)合一,该点称为正三角形的中心.典例剖析高中必备知识点1:三角形的“四心”【典型例题】如图,在O中,AB是的直径,PA与O 相切于点A,点C在O 上,且PCPA, (1)求证PC是O的切线;(2)过点C作CDAB于点E,交O于点D,若CDPA2, 求图中阴影部分面积;连接AC,若PAC的内切圆圆心为I,则线段IE的长为 【变式训练】已知菱形ABCD的边长为2ADC=60,等边AEF两边分别交边DC、CB于点E、F。(1)特殊发现:如图,若点E、F分别是边DC、CB的中点求证:菱形ABCD对角线AC、BD交点O即为等边AEF的外心;(2)若点E、F始终分别在边DC、CB上移动记等边AE
6、F的外心为点P猜想验证:如图猜想AEF的外心P落在哪一直线上,并加以证明;拓展运用:如图,当AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断1DM+1DN是否为定值若是请求出该定值;若不是请说明理由。【能力提升】定义:到三角形的两边距离相等的点,叫做此三角形的准内心,例如:如图1,PDAC,PEAB,垂足分别为点D、E,若PDPE,则点P为ABC的准内心(1)应用:如图2,CD为等边三角形ABC的高,准内心P在高CD上,且PD12AB,求APB的度数(2)探究:如图3,已知ABC为直角三角形,斜边BC5,AB3,准内心P在AC边上(不与点A、C重合),求PA
7、的长高中必备知识点2:几种特殊的三角形【典型例题】问题发现:如图1,ABC是等边三角形,点D是边AD上的一点,过点D作DEBC交AC于E,则线段BD与CE有何数量关系?拓展探究:如图2,将ADE绕点A逆时针旋转角(0360),上面的结论是否仍然成立?如果成立,请就图中给出的情况加以证明问题解决:如果ABC的边长等于2,AD2,直接写出当ADE旋转到DE与AC所在的直线垂直时BD的长【变式训练】如图,两条射线BA/CD,PB和PC分别平分ABC和DCB,AD过点P,分别交AB,CD与点A,D(1)求BPC的度数;(2)若,求AB+CD的值;(3)若为a,为b,为c,求证:a+b=c【能力提升】如
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
协议书范本【合伙协议】2019合伙协议书范本,合同范本.pdf
