北师大版八年级数学上册第一章勾股定理单元测评试卷(详解版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 八年 级数 上册 第一章 勾股定理 单元 测评 试卷 详解
- 资源描述:
-
1、北师大版八年级数学上册第一章勾股定理单元测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形的两直角边分别是a、b,且,大正方形的
2、面积是9,则小正方形的面积是()A3B4C5D62、如图,在由边长为1的7个正六边形组成的网格中,点A,B在格点上若再选择一个格点C,使ABC是直角三角形,且每个直角三角形边长均大于1,则符合条件的格点C的个数是()A2B4C5D63、九章算术被尊为古代数学“群经之首”,其卷九勾股定理篇记载:今有圆材埋于壁中,不知大小以锯锯之,深一寸,锯道长一尺问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这个木材,锯口深等于1寸,锯道长1尺,则圆形木材的直径是()(1尺=10寸)A12寸B13寸C24寸D26寸4、若直角三角形的三边长分别为2,4,x,则x的可能值有()A1个B2
3、个C3个D4个5、如图,点,在直线的同侧,到的距离,到的距离,已知,是直线上的一个动点,记的最小值为,的最大值为,则的值为()A160B150C140D1306、如图,在水塔O的东北方向24m处有一抽水站A,在水塔的 东南方向18m处有一建筑工地B,在AB间建一条直水管,则 水管AB的长为()A40mB45mC30mD35m7、如图,在22的正方形网格中有9个格点,已经取定点A和B,在余下的点中任取一点C,使ABC为直角三角形的概率是()ABCD8、下面图形能够验证勾股定理的有()个A4个B3个C2个D1个9、在ABC中,A,B,C的对边分别记为a,b,c,下列结论中不正确的是()A如果a2=
4、b2c2,那么ABC是直角三角形且A=90B如果A:B:C=1:2:3,那么ABC是直角三角形C如果,那么ABC是直角三角形D如果,那么ABC是直角三角形10、已知直角三角形纸片的两条直角边长分别为m和n(mn),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则( )Am2+2mn+n2=0Bm22mn+n2=0Cm2+2mnn2=0Dm22mnn2=0第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在ABC中,AD是BC边上的中线,ADAB,如果AC=5,AD=2,那么AB的长是_2、如图,在ABC中,AB10,BC9, AC17,则BC边上的高为_
5、3、如图,在长方形ABCD中,AB8,AD10,点E为BC上一点,将ABE沿AE折叠,点B恰好落在线段DE上的点F处,则BE的长为_4、如图,在一次综合实践活动中,小明将一张边长为的正方形纸片,沿着边上一点与点的连线折叠,点是点的对应点,延长交于点,经测量,则的面积为_5、如图,在中,现将沿进行翻折,使点刚好落在上,则_三、解答题(5小题,每小题10分,共计50分)1、如图,是一块草坪,已知AD=12m,CD=9m,ADC=90,AB=39m,BC=36m,求这块草坪的面积2、我们知道,到线段两端距离相等的点在线段的垂直平分线上由此,我们可以引入如下新定义:到三角形的两个顶点距离相等的点,叫做
6、此三角形的准外心(1)如图1,点P在线段BC上,ABPAPDPCD90,BPCD求证:点P是APD的准外心;(2)如图2,在RtABC中,BAC90,BC5,AB3,ABC的准外心P在ABC的直角边上,试求AP的长3、如图,一个长5m的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为4m,如果梯子的顶端A沿墙下滑1m至C点(1)求梯子底端B外移距离BD的长度;(2)猜想CE与BE的大小关系,并证明你的结论4、如图,高速公路上有A,B两点相距10km,C,D为两村庄,已知DA4km,CB6km,DAAB于点A,CBAB于B,现要在AB上建一个服务站E,使得C,D两村庄到E站的距离相等,求BE的
7、长5、(1)如图是一个重要公式的几何解释,请你写出这个公式;(2)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(1876年4月1日发表在新英格兰教育日志上),现请你尝试证明过程说明:-参考答案-一、单选题1、A【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积4个直角三角形的面积,利用已知(a+b)2=15,大正方形的面积为9,可以得出直角三角形的面积,进而求出答案【详解】解:(a+b)2=15,a2+2ab+b2=15,大正方形的面积为:a2+b2=9,2ab=159=6,即ab=3,直角三角形的面积为:,小正方形的面积为:,故选:A【考点】此题主
8、要考查了完全平方公式及勾股定理的应用,熟练应用完全平方公式及勾股定理是解题关键2、D【解析】【分析】分三种情况讨论,当A=90,或B=90,或C=90时,分别画出符合条件的图形,即可解答【详解】解:分三种情况讨论,当A=90,或B=90,或C=90如图 符合条件的格点C的个数是6个故选:D【考点】本题考查正多边形和圆的性质、直角三角形的判定与性质、直径所对的圆周角是90等知识,是基础考点,掌握相关知识是解题关键3、D【解析】【分析】连接OA、OC,由垂径定理得ACBCAB5寸,连接OA,设圆的半径为x寸,再在RtOAC中,由勾股定理列出方程,解方程可得半径,进而直径可求【详解】解:连接OA、O
9、C,如图:由题意得:C为AB的中点,则O、C、D三点共线,OCAB,ACBCAB5(寸),设圆的半径为x寸,则OC(x1)寸在RtOAC中,由勾股定理得:52+(x1)2x2,解得:x13圆材直径为21326(寸)故选:D【考点】本题主要考查了垂径定理的应用,勾股定理的应用,熟练掌握垂径定理,由勾股定理得出方程是解题的关键4、B【解析】【详解】分析:x可为斜边也可为直角边,因此解本题时要对x的取值进行讨论解答:解:当x为斜边时,x2=22+42=20,所以x=2;当4为斜边时,x2=16-4=12,x=2故选B点评:本题考查了勾股定理的应用,注意要分两种情况讨论5、A【解析】【分析】作点A关于
10、直线MN的对称点,连接交直线MN于点P,则点P即为所求点,过点作直线,在根据勾股定理求出线段的长,即为PA+PB的最小值,延长AB交MN于点,此时,由三角形三边关系可知,故当点P运动到时最大,过点B作由勾股定理求出AB的长就是的最大值,代入计算即可得【详解】解:如图所示,作点A关于直线MN的对称点,连接交直线MN于点P,则点P即为所求点,过点作直线,在中,根据勾股定理得,即PA+PB的最小值是;如图所示,延长AB交MN于点,当点P运动到点时,最大,过点B作,则, ,在中,根据勾股定理得,即,故选A【考点】本题考查了最短线路问题和勾股定理,解题的关键是熟知两点之间线段最短及三角形的三边关系6、C
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
