2012届高考数学(理)《优化方案》一轮复习课件:第10章第八节 离散型随机变量的均值与方差(苏教版江苏专用.ppt
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优化方案 2012届高考数学理优化方案一轮复习课件:第10章第八节 离散型随机变量的均值与方差苏教版江苏专用 2012 高考 数学 优化 方案 一轮 复习 课件 10 八节 离散 随机变量 均值
- 资源描述:
-
1、第八节 离散型随机变量的均值与方差第八节离散型随机变量的均值与方差考点探究挑战高考考向瞭望把脉高考双基研习面对高考双基研习面对高考基础梳理基础梳理1均值(1)一般地,若离散型随机变量X的分布列为则称E(X)_为随机变量X的均值或数学期望,它反映了离散型随机变量取值的_Xx1x2xnPp1p2pnx1p1x2p2xipixnpn平均水平(2)若YaXb,其中a,b为常数,则Y也是随机变量,且E(aXb)_.(3)若X服从两点分布,则E(X)_;若XB(n,p),则E(X)_.2方差(1)设离散型随机变量X的分布列为Xx1x2xnPp1p2pnaE(X)bpnp则_描述了xi(i1,2,n)相对于
2、均值E(X)的偏离程度,故V(X)(xiE(X)2pi(其中pi0,i1,2,n,p1p2pn1),刻 画 了 随 机 变 量 X与 其 均 值 E(X)的_,称V(X)为随机变量X的方差,其算术平方根为_随机变量X的标准差(2)V(aXb)_(3)若X服从两点分布,则V(X)_(4)若XB(n,p),则V(X)_(xiE(X)2平均偏离程度a2V(X)p(1p)np(1p)思考感悟随机变量的均值、方差与样本均值、方差的关系是怎样的?提示:随机变量的均值、方差是一个常数,样本均值、方差是一个随机变量,随观测次数的增加或样本容量的增加,样本的均值、方差趋于随机变量的均值与方差1已知X的分布列为,
3、设Y2X3,则E(Y)的值为_课前热身课前热身2随机变量X的分布列如下:X101Pabc3(2011年南京调研)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75.(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为,求随机变量的期望故Enp30.30.9.法二:分别记甲、乙、丙经过两次烧制后合格为事件A
4、,B,C,则P(A)P(B)P(C)0.3,所以P(0)(10.3)30.343,P(1)3(10.3)20.30.441,P(2)30.320.70.189,P(3)0.330.027.于是,E()10.44120.18930.0270.9.考点探究挑战高考考点一离散型随机变量的均值考点突破考点突破对随机变量的均值(期望)的理解:(1)均值是算术平均值概念的推广,是概率意义上的平均;(2)E()是一个实数,由的分布列惟一确定,也就是说随机变量可以取不同的值,而E()是不变的,它描述的是取值的平均状态;(3)E()的公式直接给出了E()的求法(4)公式E(ab)aE()b说明随机变量的线性函数
5、ab的期望等于随机变量的期望的线性函数例例11(2010年高考江西卷)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门再次到达智能门时,系统会随机打开一个你未到过的通道,直至走完迷宫为止令表示走出迷宫所需的时间(1)求的分布列;(2)求的数学期望【思路分析】(1)中为相互独立事件,(2)中直接利用公式计算【名师点评】求期望,其关键是列出准确的分布列,或者能判断出事件概率的类型,如本题是二项分布问题,就可以直接用公式求之变式训练1有甲、乙、丙、丁四名
6、乒乓球运动员,通过对过去成绩的统计,在一场比赛中,甲对乙、丙、丁取胜的概率分别为0.6,0.8,0.9.(1)若甲和乙之间进行三场比赛,求甲恰好胜两场的概率;(2)四名运动员每两人之间进行一场比赛,设甲获胜场次为,求随机变量的分布列及数学期望E()P(0)0.40.20.10.008;P(1)0.60.20.10.40.80.10.40.20.90.116;P(2)0.60.80.10.60.20.90.40.80.90.444;P(3)0.60.80.90.432.随机变量的分布列为:E()00.00810.11620.44430.4322.3.0123P0.0080.1160.4440.4
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-965097.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2013届高考政治考前三个月 专题课件 专题三学案11.ppt
