2013届高考数学一轮复习讲义:10.1 分类计数原理与分步计数原理.ppt
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2013届高考数学一轮复习讲义:10.1 分类计数原理与分步计数原理 2013 高考 数学 一轮 复习 讲义 10.1 分类 计数 原理 分步
- 资源描述:
-
1、主页一轮复习讲义分类计数原理与分步计数原理主页忆 一 忆 知 识 要 点主页忆 一 忆 知 识 要 点主页主页主页分类计数原理分类计数原理主页主页50主页分步计数原理分步计数原理主页主页主页主页两个计数原理的综合应用两个计数原理的综合应用主页主页主页主页主页主页主页主页分类不准、计数原理使用不当致误主页主页正确答案 11主页主页主页排列、组合计数原理计数原理二项式定理组合通项二项式定理二项式系数性质分类计数原理分步计数原理排列排列的定义排列数公式组合的定义组合数公式组合数性质应用主页名称内容加法原理乘法原理定义相同点不同点做一件事或完成一项工作的方法数直接(分类)完成间接(分步骤)完成做一件事
2、,完成它可以有n类办法,第一类办法中有m1种不同的方法,第二类办法中有m2种不同的方法,第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+mn种不同的方法.做一件事,完成它可以有n个步骤,做第一步中有m1种不同的方法,做第二步中有m2种不同的方法,第n步中有mn种不同的方法,那么 完 成 这 件 事 共 有N=m1m2m3mn种不同的方法.1.两个原理的区别于联系主页【结论】集合A中有m个元素,集合B中有n个元素,那么从A到B可以构造nm个映射.解:第一步,给a找对应元素,有3种方法;第二步,给b找对应元素,有3种方法;第三步,给c找对应元素,有3种方法;第四步,给d找对
3、应元素,有3种方法;第五步,给e找对应元素,有3种方法.例1.设 A=a,b,c,d,e,B=x,y,z,从A到B共有多少种不同的映射?一 映射个数问题形成一个映射,就是让A中所有元素都找到对应元素.则共有方法种数N=35.主页例1.设A=a,b,c,d,e,f,B=x,y,z,从A到B共有多少种不同的映射?【1】设A=1,2,3,B=4,5,6,从A到B满足1的象是4的映射有多少种?【2】设集合A=x,y,z,B=-1,0,1,映射f:AB满足f(x)+f(y)+f(z)=0的映射有多少种?主页【3】已知集合Aa,b,c,d,集合B1,2,3,4,5,集合C=e,f,g,h.(1)从集合B
4、到集合A可以建立多少个不同的映射?(2)在集合A到集合B的映射中,若要求集合A中的不同元素的象也不同,这样的映射有多少个?(3)从集合A到集合C可以建立多少个一一映射?主页例2.集合A=a,b,c,d,e,它的子集个数为_,真子集个数为_,非空子集个数为_,非空真子集个数为_.二 子集问题【1】集合M满足1,2M0,1,2,3,4,5,则这样的集合M有多少个?主页真子集有_个,非空子集个数为_,非空真子集个数有_.【规律】n元集合a1,a2,an,的不同子集有个_个.2n二 子集问题主页解:按地图A,B,C,D四个区域依次分四步完成,第一步,m1=3 种,第二步,m2=2 种,第三步,m3=1
5、 种,第四步,m4=1 种,三、着色问题例3.如图,要给地图A,B,C,D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?所以根据乘法原理,得到不同的涂色方案种数共有N=3211=6 种.主页例3.如图,要给地图A,B,C,D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?三、着色问题主页用红,黄,绿,黑四种不同的颜色涂入下图中的五个区域内,要求相邻的两个区域的颜色都不相同,则有多少种不同的涂色方法?当B与D不同色时,有43211=24种.ABCDE解:当B与
6、D同色时,有43212=48种;故共有48+24=72种不同的涂色方法.主页点评:像这类给区域涂色的问题,我们应该给区域依次标上相应的序号,以便分析问题,在给各区域涂色时,要注意不同的涂色顺序其解题就有繁简之分.ABCDE如本例若按A、B、E、D、C顺序涂色时,在最后给区域C涂色时,就应考虑A与E是否同色,B与D是否同色这两种情况.因此在分析解决这类问题时,应按不同的涂色顺序多多尝试,看那一个最简单.本例易错点:未考虑B与D是否同色.主页(2003年全国高考题)如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法有_种.(以数字
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
循环系统疾病病人的护理练习试卷6-1.pdf
