分享
分享赚钱 收藏 举报 版权申诉 / 10

类型2022秋高中数学 第七章 随机变量及其分布 培优课 离散型随机变量的均值与方差的综合应用课后习题 新人教A版选择性必修第三册.docx

  • 上传人:a****
  • 文档编号:240202
  • 上传时间:2025-11-21
  • 格式:DOCX
  • 页数:10
  • 大小:50.68KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022秋高中数学 第七章 随机变量及其分布 培优课 离散型随机变量的均值与方差的综合应用课后习题 新人教A版
    资源描述:

    1、培优课离散型随机变量的均值与方差的综合应用A级必备知识基础练1.已知随机变量i满足P(i=1)=pi,P(i=0)=1-pi,i=1,2.若0p1p212,则()A.E(1)E(2),D(1)D(2)B.E(1)D(2)C.E(1)E(2),D(1)E(2),D(1)D(2)2.甲、乙两台自动车床生产同种标准的零件,X表示甲车床生产1 000件产品中的次品数,Y表示乙车床生产1 000件产品中的次品数,经过一段时间的考察,X,Y的分布列分别为X0123P0.70.10.10.1Y012P0.50.30.2据此判定()A.甲生产的零件质量比乙生产的零件质量好B.乙生产的零件质量比甲生产的零件质量

    2、好C.甲生产的零件质量与乙生产的零件质量一样D.无法判定3.已知随机变量X的分布列为P(X=k)=13,k=3,6,9,则D(X)等于()A.6B.9C.3D.44.(2022重庆九龙坡月考)学校要从10名候选人中选2名同学组成学生会,其中高二(1)班有4名候选人,假设每名候选人都有相同的机会被选到,若X表示选到高二(1)班的候选人的人数,则E(X)=()A.34B.89C.38D.455.小芳用肢体语言把成语的意思传递给本组其他同学.若小组内同学甲猜对成语的概率是0.4,同学乙猜对成语的概率是0.5,且规定猜对得1分,猜不对得0分,则这两个同学各猜1次,得分之和X(单位:分)的均值为()A.

    3、0.9B.0.8C.1.2D.1.16.同时抛掷两枚质地均匀的骰子,至少有一个3点或6点出现时,就说这次试验成功,则在9次试验中,成功次数X的均值是.7.若随机事件A在1次试验中发生的概率为p(0p100时,E(X)N的值最接近()A.0B.13C.23D.112.已知在10件产品中可能存在次品,从中抽取2件检查,其次品数为,已知P(=1)=1645且该产品的次品率不超过40%,则这10件产品的次品率为()A.10%B.20%C.30%D.40%13.已知离散型随机变量的可能值为-1,0,1,且E()=0.1,D()=0.89,则对应的概率P1(X=-1),P2(X=0),P3(X=1)分别为

    4、、.14.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c(0,1),已知他投篮一次得分的均值为1(不计其他得分情况),则ab的最大值为.15.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示.X1234Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米.(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(2)从所种作物中随机选取一株

    5、,求它的年收获量的分布列与均值.16.本着健康低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分,每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14,12;两小时以上且不超过三小时还车的概率分别为12,14;两人租车时间都不会超过四小时.(1)求甲、乙两人所付的租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量X,求X的分布列及均值.C级学科素养创新练17.(2022北京丰台一模)为研究某地区2021届大学毕业生毕业

    6、三个月后的毕业去向,某调查公司从该地区2021届大学毕业生中随机选取了1 000人作为样本进行调查,结果如下:毕业去向继续学习深造单位就业自主创业自由职业慢就业人数2005601412898假设该地区2021届大学毕业生选择的毕业去向相互独立.(1)若该地区一所高校2021届大学毕业生的人数为2 500,试根据样本估计该校2021届大学毕业生选择“单位就业”的人数;(2)从该地区2021届大学毕业生中随机选取3人,记随机变量X为这3人中选择“继续学习深造”的人数,以样本的频率估计概率,求X的分布列和数学期望E(X);(3)该公司在半年后对样本中的毕业生进行再调查,发现仅有选择“慢就业”的毕业生

    7、中的a(0a98)人选择了如表中其他的毕业去向,记此时表中五种毕业去向对应人数的方差为s2.当a为何值时,s2最小.(结论不要求证明)培优课离散型随机变量的均值与方差的综合应用1.A由题意可知i(i=1,2)服从两点分布,E(1)=p1,E(2)=p2,D(1)=p1(1-p1),D(2)=p2(1-p2),又0p1p212,E(1)E(2),把方差看作函数y=x(1-x),函数在区间0,12上单调递增,故由题意可知,D(1)D(2).故选A.2.AE(X)=00.7+10.1+20.1+30.1=0.6,E(Y)=00.5+10.3+20.2=0.7.显然E(X)E(Y),由均值的意义知,甲

    8、生产的零件质量比乙生产的零件质量好.3.AE(X)=313+613+913=6.D(X)=(3-6)213+(6-6)213+(9-6)213=6.4.DX的可能取值有0,1,2,且P(X=0)=C62C102=13,P(X=1)=C41C61C102=815,P(X=2)=C42C102=215,X的分布列如下:X012P13815215E(X)=013+1815+2215=45.5.A由题意得X=0,1,2,则P(X=0)=0.60.5=0.3,P(X=1)=0.40.5+0.60.5=0.5,P(X=2)=0.40.5=0.2,故E(X)=10.5+20.2=0.9.6.5由已知,同时抛

    9、掷两枚骰子一次,至少有一个3点或6点出现时的概率为2036=59,9次试验相当于9次独立重复试验,则成功次数X服从二项分布,即XB9,59.故E(X)=959=5.7.14随机变量X的所有可能的取值是0,1,并且P(X=1)=p,P(X=0)=1-p.从而E(X)=0(1-p)+1p=p.D(X)=(0-p)2(1-p)+(1-p)2p=p-p2=-p-122+14.因为0p100时,E(X)N的值最接近23.12.B设10件产品中存在n件次品,从中抽取2件,其次品数为,由P(=1)=1645,得Cn1C10-n1C102=1645,化简得n2-10n+16=0,解得n=2或n=8.又该产品的

    10、次品率不超过40%,则n4,即n=2,则这10件产品的次品率为210=20%.13.0.40.10.5的分布列为-101PP1P2P3E()=-P1+P3=0.1,D()=(-1-0.1)2P1+(0-0.1)2P2+(1-0.1)2P3=0.89.即1.21P1+0.01P2+0.81P3=0.89,即121P1+P2+81P3=89.又P1+P2+P3=1,-P1+P3=0.1,P1+P2+P3=1,121P1+P2+81P3=89,解得P1=0.4,P2=0.1,P3=0.5.14.124由已知可得3a+2b+0c=1,即3a+2b=1,故ab=163a2b163a+2b22=16122

    11、=124.当且仅当3a=2b=12时取等号,即ab的最大值为124.15.解(1)所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12.从三角形地块的内部和边界上分别随机选取一株的不同结果有C31C121=36(种),选取的两株作物恰好“相近”的不同结果有3+3+2=8(种).故从三角形地块的内部和边界上分别随机选取一株作物,它们恰好“相近”的概率为836=29.(2)先求从所种作物中随机选取一株作物的年收获量Y的分布列.因为P(Y=51)=P(X=1),P(Y=48)=P(X=2),P(Y=45)=P(X=3),P(Y=42)=P(X=4),所

    12、以只需求出P(X=k)(k=1,2,3,4)即可.记nk为其“相近”作物恰有k株的作物株数(k=1,2,3,4),则n1=2,n2=4,n3=6,n4=3.由P(X=k)=nkN得P(X=1)=215,P(X=2)=415,P(X=3)=615=25,P(X=4)=315=15.故所求的分布列为Y51484542P2154152515E(Y)=51215+48415+4525+4215=46.16.解(1)由题意得,甲、乙在三小时以上且不超过四小时还车的概率分别为14,14.记甲、乙两人所付的租车费用相同为事件A,则P(A)=1412+1214+1414=516.故甲、乙两人所付的租车费用相同

    13、的概率为516.(2)X的可能取值为0,2,4,6,8.P(X=0)=1412=18,P(X=2)=1414+1212=516,P(X=4)=1214+1412+1414=516,P(X=6)=1214+1414=316,P(X=8)=1414=116.甲、乙两人所付的租车费用之和X的分布列为X02468P18516516316116E(X)=018+2516+4516+6316+8116=72.17.解(1)由题意得,该校2021届大学毕业生选择“单位就业”的人数为25005601000=1400.(2)由题意得,样本中1000名毕业生选择“继续学习深造”的频率为2001000=15.用频率

    14、估计概率,从该地区2021届大学毕业生中随机选取1名学生,估计该生选择“继续学习深造”的概率为15.随机变量X的所有可能取值为0,1,2,3,所以P(X=0)=C301501-153=64125,P(X=1)=C31151-152=48125,P(X=2)=C321521-15=12125,P(X=3)=C331531-150=1125,所以X的分布列为X0123P6412548125121251125E(X)=064125+148125+212125+31125=35.(3)易知五种毕业去向的人数的平均数为200,要使方差最小,则数据波动性越小,故当自主创业和慢就业人数相等时方差最小,所以a=42.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022秋高中数学 第七章 随机变量及其分布 培优课 离散型随机变量的均值与方差的综合应用课后习题 新人教A版选择性必修第三册.docx
    链接地址:https://www.ketangku.com/wenku/file-240202.html
    相关资源 更多
  • 江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc
  • 江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc
  • 江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx
  • 湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc
  • 湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc
  • 湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc
  • 湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc
  • 江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc
  • 江西省重点高中2022学年高一数学上学期第三次月考试题.docx江西省重点高中2022学年高一数学上学期第三次月考试题.docx
  • 湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc
  • 江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc
  • 江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc
  • 湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc
  • 江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1