2022届高中数学讲义微专题78 定值问题 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高中数学讲义微专题78 定值问题 WORD版含解析 2022 高中数学 讲义 专题 78 问题 WORD 解析
- 资源描述:
-
1、微专题78 圆锥曲线中的定值问题一、基础知识: 所谓定值问题,是指虽然圆锥曲线中的某些要素(通常可通过变量进行体现)有所变化,但在变化过程中,某个量的值保持不变即为定值。1、常见定值问题的处理方法:(1)确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示(2)将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数。2、定值问题的处理技巧:(1)对于较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向。(2)在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢(3)巧妙利用变量间的关
2、系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算二、典型例题: 例1:已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为,右焦点,双曲线的实轴为,为双曲线上一点(不同于),直线分别于直线交于两点(1)求双曲线的方程(2)试判断是否为定值,若为定值,求出该值;若不为定值,请说明理由解:(1)由可得,且焦点在轴上所以设双曲线方程为:,则渐近线方程为 由解得:双曲线方程为(2)由(1)可得:,设设,联立方程解得:同理:设,联立方程可得:下面考虑计算的值 在双曲线上 所以为定值例2:已知椭圆的离心率为,且过点(1)求椭圆方程(2)设不过原点的直线,与该椭圆交于两点,直线的斜率依次为,且
3、满足,试问:当变化时,是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由解:(1)由可得:椭圆方程为代入可得:解得: 椭圆方程为(2)设,联立方程可得:消去可得:,整理可得:依题意可知:即 由方程可得:代入可得:,整理可得:可知为定值,与的取值无关例3:已知椭圆经过点,动点(1)求椭圆标准方程(2)设为椭圆的右焦点,过作的垂线与以为直径的圆交于点,求证:的长为定值,并求出这个定值解:(1)由可得: 椭圆方程可转化为:,将代入椭圆方程可得:,解得: 椭圆方程为 (2)由(1)可得: 思路一:通过圆的性质可得,而(设垂足为),由双垂直可想到射影定理,从而,即可判定为定值,设与相交于则
4、解得: 为圆的直径 由射影定理可得: 思路二:本题也可从坐标入手,设,则只需证明为定值即可,通过条件寻找关系,一方面:,可得;另一方面由点在圆上,可求出圆的方程,从而,展开后即可得到为定值解:设,则 的中点坐标为, 以为直径的圆方程为: 代入,可得: 即 例4:已知椭圆的离心率为,半焦距为,且,经过椭圆的左焦点,斜率为的直线与椭圆交于两点,为坐标原点(1)求椭圆的方程(2)设,延长分别与椭圆交于两点,直线的斜率为,求证:为定值解:(1),设 由可得: (2)由(1)可得 ,设 可得: 联立方程 同理,直线与椭圆交点的坐标为 设 ,代入可得: 小炼有话说:本题中注意的变形:可通过直线方程用表示,
5、代入后即可得到关于的表达式例5:已知椭圆的右焦点为,且点在椭圆上,为坐标原点(1)求椭圆的标准方程(2)过椭圆上异于其顶点的任一点,作圆的切线,切点分别为(不在坐标轴上),若直线的横纵截距分别为,求证:为定值解:(1)依可知 椭圆方程为代入解得: 椭圆方程为 (2)思路:由(1)可得:,可设,由题意可知为过作圆切线所产生的切点弦,所以,从而可得,所以,由椭圆方程可得,从而为定值解:由(1)可得:设 可知是过作圆切线所产生的切点弦设,由是切点可得: ,代入:,即 ,同理可知对于,有因为在圆上 为直线上的点因为两点唯一确定一条直线,即 由截距式可知 在椭圆上 即为定值小炼有话说:(1)本题定值是通
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
