2022届高考数学一轮复习 第2章 2.8 函数与方程核心考点 精准研析训练(含解析)新人教B版.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高考数学一轮复习 第2章 2.8 函数与方程核心考点 精准研析训练含解析新人教B版 2022 高考 数学 一轮 复习 函数 方程 核心 考点 精准 研析 训练 解析 新人
- 资源描述:
-
1、第2章核心考点精准研析考点一判断函数零点所在区间1.已知实数a1,0b1,则函数f(x)=ax+x-b的零点所在的区间是()A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)2.设函数f(x)=x-ln x,则函数y=f(x)()A.在区间,(1,e)内均有零点B.在区间,(1,e)内均无零点C.在区间内有零点,在区间(1,e)内无零点D.在区间内无零点,在区间(1,e)内有零点3.(2020扬州模拟)设函数y=x2与y=的图象交点为(x0,y0),则x0所在区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)4.若ab1,0b1,f(x)=ax+x-b,所以f(-1
2、)=-1-b0,由零点存在性定理可知f(x)在区间(-1,0)上存在零点.2.选D.令f(x)=0得x=ln x.作出函数y=x和y=ln x的图象,如图,显然y=f(x)在内无零点,在(1,e)内有零点.3.选B.因为函数y=x2与y=的图象交点为(x0,y0),则x0是方程x2=的解,也是函数f(x)=x2-的零点.因为函数f(x)在(0,+)上单调递增,f(2)=22-1=30,f(1)=1-2=-10,所以f(1)f(2)0.由零点存在性定理可知,方程的解在(1,2)内.4.选A.因为ab0,f(b)=(b-c)(b-a)0,由函数零点存在性定理可知:在区间(a,b),(b,c)内分别
3、存在零点,又函数f(x)是二次函数,最多有两个零点;因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内.确定函数零点所在区间的常用方法(1)利用函数零点存在性定理.(2)数形结合法.【秒杀绝招】用特殊值法可解T2.考点二确定函数零点的个数【典例】1.函数f(x)=|x-2|-ln x零点的个数为()A.0B.1C.2D.32.(2019全国卷)函数f(x)=2sin x-sin 2x在0,2的零点个数为()A.2B.3C.4D.53.已知函数y=f(x)是周期为2的周期函数,且当x-1,1时,f(x)=2|x|-1,则函数F(x)=f(x)-|lg x|的零点个数是世纪金榜导学号(
4、)A.9B.10C.11D.18【解题导思】序号联想解题1由f(x)=|x-2|-ln x的零点,想到|x-2|=ln x.2由f(x)=2sin x-sin 2x,想到化简,令f(x)=0求sin x与cos x的值.3由F(x)=f(x)-|lg x|的零点个数,想到f(x)=|lg x|.【解析】1.选C.作出函数y=|x-2|与g(x)=ln x的图象,如图所示.由图象可知两个函数的图象有两个交点,即函数f(x)在定义域内有2个零点.2.选B.令f(x)=2sin x-sin 2x=2sin x-2sin xcos x=2sin x(1-cos x)=0,则sin x=0或cos x=
5、1,又x0,2,所以x=0,2,共三个零点.3.选B.在同一平面直角坐标系内作出函数y=f(x)与y=|lg x|的大致图象如图,由图象可知,它们共有10个不同的交点,因此函数F(x)=f(x)-|lg x|的零点个数是10.函数零点个数的判断方法(1)直接求零点.(2)利用零点存在性定理再结合函数的单调性确定零点个数.(3)利用函数图象的交点个数判断.1.函数f(x)=3x+x3-2在区间(0,1)内的零点个数是()A.0B.1C.2D.3【解析】选B.由题意知f(x)单调递增,且f(0)=1+0-2=-10,即f(0)f(1)0且函数f(x)在(0,1)内连续不断,所以f(x)在区间(0,
6、1)内有一个零点.2.已知函数f(x)=则函数y=f(x)+3x的零点个数是()A.0B.1C.2D.3【解析】选C.令f(x)+3x=0,则或解得x=0或x=-1,所以函数y=f(x)+3x的零点个数是2.3.已知f(x)=则函数y=2f(x)2-3f(x)+1的零点个数是_.【解析】由2f(x)2-3f(x)+1=0得f(x)=或f(x)=1,作出函数y=f(x)的图象.由图象知y=与y=f(x)的图象有2个交点,y=1与y=f(x)的图象有3个交点.因此函数y=2f(x)2-3f(x)+1的零点有5个.答案:5考点三函数零点的应用命题精解读考什么:(1)由函数的零点有无、个数求参数值或范
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-245898.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
2021年部编版二年级语文上册专项3:句子复习课件.pptx
