2023届新高考数学专题复习 专题37 数列求和中的不等式问题(学生版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023届新高考数学专题复习 专题37 数列求和中的不等式问题学生版 2023 新高 数学 专题 复习 37 数列 求和 中的 不等式 问题 学生
- 资源描述:
-
1、专题37 数列求和中的不等式问题一、题型选讲题型一 、数列中与不等式有关的证明问题例1、【2020年高考浙江】已知数列an,bn,cn满足()若bn为等比数列,公比,且,求q的值及数列an的通项公式;()若bn为等差数列,公差,证明:例2、(河北省衡水中学2021届上学期高三年级二调考试)甲、乙两名同学在复习时发现他们曾经做过的一道数列题目因纸张被破坏,导致一个条件看不清,具体如下:等比数列的前项和为,已知,(1)判断的关系并给出证明(2)若,设,的前项和为,证明:甲同学记得缺少的条件是首项的值,乙同学记得缺少的条件是公比的值,并且他俩都记得第(1)问的答案是成等差数列如果甲、乙两名同学记得的
2、答案是正确的,请通过推理把条件补充完整并解答此题例3、(2020浙江温州中学3月高考模拟)已知各项均为正数的数列的前项和为,且,(,且)(1)求数列的通项公式;(2)证明:当时,题型二、数列中与不等式有关的参数问题例4、【2018年高考江苏卷】已知集合,将的所有元素从小到大依次排列构成一个数列记为数列的前n项和,则使得成立的n的最小值为_例5、【2020届江苏省南通市如皋市高三下学期二模】已知等比数列的前项和为,若,且,成等差数列,则满足不等式的的最小值为_.例6、(2020届山东实验中学高三上期中)设正项数列的前n项和为,已知(1)求证:数列是等差数列,并求其通项公式(2)设数列的前n项和为
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
