2023届新高考数学培优专练 专题01 圆锥曲线中的弦长问题(学生版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023届新高考数学培优专练 专题01 圆锥曲线中的弦长问题学生版 2023 新高 数学 培优专练 专题 01 圆锥曲线 中的 问题 学生
- 资源描述:
-
1、专题01 圆锥曲线中的弦长问题一、单选题 1设椭圆长半轴长为,短半轴长为,半焦距为,则过焦点且垂直于长轴的弦长是( )ABCD2已知椭圆,直线l过椭圆C的左焦点F且交椭圆于A,B两点,的中垂线交x轴于M点,则的取值范围为( )ABCD3过椭圆9x2+25y2=225的右焦点且倾斜角为45的弦长AB的长为( )A5B6CD74椭圆的左、右焦点分别是、,斜率为的直线l过左焦点且交于,两点,且的内切圆的周长是,若椭圆的离心率为,则线段的长度的取值范围是( )ABCD二、多选题5已知抛物线的焦点为,过点的直线交抛物线于、两点,以线段为直径的圆交轴于、两点,则( )A若抛物线上存在一点到焦点的距离等于,
2、则抛物线的方程为B若,则直线的斜率为C若直线的斜率为,则D设线段的中点为,若点到抛物线准线的距离为,则的最小值为三、解答题6如图,是直线上一动点,过点且与垂直的直线交抛物线于,两点,点在,之间(1)若过抛物线的焦点,求;(2)求的最小值7已知椭圆()长轴长为短轴长的两倍,连结椭圆的四个顶点得到的菱形的面积为4,直线过点,且与椭圆相交于另一点(1)求椭圆的方程;(2)若线段长为,求直线的倾斜角8已知直线经过抛物线的焦点,且与抛物线交于、两点.(1)若直线的倾斜角为,求线段的长;(2)若,求的长.9已知圆上上任取一点,过点作轴的垂线段,垂足为,当在圆上运动时,线段中点为.(1)求点的轨迹方程;(2
3、)若直线l的方程为yx1,与点的轨迹交于,两点,求弦的长.10已知椭圆的右焦点为,左、右顶点为、,.(1)求椭圆的标准方程;(2)求直线被椭圆截得的弦长.11已知直线与圆相交.(1)求的取值范围;(2)若与相交所得弦长为,求直线与相交所得弦长.12已知双曲线的标准方程为,分别为双曲线的左、右焦点.(1)若点在双曲线的右支上,且的面积为,求点的坐标;(2)若斜率为1且经过右焦点的直线与双曲线交于两点,求线段的长度.13设抛物线,为的焦点,过的直线与交于两点.(1)设的斜率为,求的值;(2)求证:为定值.14已知椭圆M:的一个焦点为,左右顶点分别为A,B经过点的直线l与椭圆M交于C,D两点()求椭
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
二年级下册语文课件-8.卡罗尔和她的小猫∣人教新课标 (共13张PPT).ppt
