2023届新高考数学培优专练 专题11 数列求和方法之分组并项求和法(学生版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023届新高考数学培优专练 专题11 数列求和方法之分组并项求和法学生版 2023 新高 数学 培优专练 专题 11 数列 求和 方法 分组 学生
- 资源描述:
-
1、专题11 数列求和方法之分组并项求和法一、单选题 1已知数列满足,且是等比数列,则( )A376B382C749D7662若在边长为的正三角形的边上有(,)等分点,沿向量的方向依次为,记,若给出四个数值:;则的值可能的共有( )A0个B1个C2个D3个3若数列的通项公式是,则( )A45B65C69D二、解答题4设为等差数列,是正项等比数列,且,.在,这两个条件中任选一个,回答下列问题:(1)写出你选择的条件并求数列和的通项公式;(2)在(1)的条件下,若,求数列的前项和.5已知数列an中,已知a11,a2a,an1k(anan2)对任意nN*都成立,数列an的前n项和为Sn.(1)若an是等
2、差数列,求k的值;(2)若a1,k,求Sn.6在数列中,.(1)证明:数列是等比数列;(2)求的前项和.7已知正项等比数列的前项和为,且满足是和的等差中项,.(1)求数列的通项公式;(2)令,求数列的前项和.8在,这三个条件中任选一个,补充在下面问题中并作答.已知是各项均为正数的等差数列,其前n项和为,_,且,成等比数列.(1)求数列的通项公式;(2)设,求.9已知数列是等差数列,是其前项和,且(1)求数列的通项公式;(2)设,求数列的前项和10已知等差数列的公差为,前项和为,且满足,成等比数列.(1)求数列的通项公式;(2)若,求数列的前项和.11已知是等比数列,数列满足,且是等差数列(1)
3、求数列和的通项公式;(2)求数列的前项和12设数列的前项和为,且.(1)证明数列是等比数列,并求出数列的通项公式;(2)若数列中,求数列的前项和.13已知是公差不为零的等差数列,且,成等比数列(1)求数列的通项公式;(2)求数列的前n项和14已知数列满足奇数项成等比数列,而偶数项成等差数列,且,数列的前n项和为()求;()当时,若,试求的最大值15在,这三个条件中任选一个,补充在下面横线上,并解答问题.已知等比数列的公比是,且有 ().(注:如果选择多个条件分别解答,那么按照第一个解答计分)(1)求证:;(2)求数列的前项和为.16设是数列的前n项和,已知,(1)求数列的通项公式;(2)设,求
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-253674.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
广东省梅州中学高二语文:《诗歌鉴赏的虚和实》课件(粤教版).ppt
