2022春八年级数学下册 第16章 分式16.3 可化为一元一次方程的分式方程第2课时解分式方程教案(新版)华东师大版.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022春八年级数学下册 第16章 分式16.3 可化为一元一次方程的分式方程第2课时解分式方程教案新版华东师大版 2022 八年 级数 下册 16 分式 16.3 化为 一元一次方程 方程 课时
- 资源描述:
-
1、16.3.2 解分式方程课题解分式方程教学目标知识目标:会解可化为一元一次方程的分式方程,了解分式方程产生增根的原因掌握解分式方程验根的方法 能力目标:由分式方程转化为整式方程,培养学生具有转化的思维能力,了解分式方程产生增根的原因,培养学生全面分析问题能力情感目标: 通过转化思想的渗透以及转化时产生增根的原因,让学生感受到全面分析,整体思考的积极性情感.重点正确、完整地解可化为一元一次方程的分式方程难点产生增根的原因,列方程时找等量关系教 学 过 程差 异 个 性 设 计【创设情境】问题:轮船在顺水中的航行80千米所需的时间和逆水中航行60千米所需的时间相同。已知水流的速度是3千米/时,求轮
2、船在静水中的速度。分析:设轮船在静水中的速度为x千米/时,根据题意,得 (1)【探究归纳】问题:怎样解方程: 讨论: 类似于解一元一次方程的去分母,把分式方程两边同时乘以最简公分母(x+3)(x-3)约去分母得80 (x-3)=60(x+3)解这个整式方程得x=21,所以轮船在静水中的速度为21千米/时归纳:上述解分式方程的过程,实质上是将方程的两边乘以同一个整式,去分母,把分式方程转化为整式方程来解,所乘的整式通常取方程中出现的各分母的最简公分母这是解分式方程的基本思路和方法.【实践应用】例1 解方程:=. 解得x=1 因为x=1使原方程没有意义,x=1不是原分式方程的根,所以原方程无解例2
3、解方程:分析最简公分母x(x-7),方程两边同乘x(x-7),把分式方程转化为整式方程,整式方程的解必须验根;解法二:利用比例的性质“内项积等于外项积”例3解方程:分析找对最简公分母(x-1)(x+2),方程两边同乘(x-1)(x+2)时,学生容易把整数1漏乘最简公分母(x-1)(x+2),整式方程的解必须验根.【检测反馈】1解方程: (1) (2) (3) (4) (5) 2.已知关于x的方程+5=有增根,求m的值【交流反思】解分式方程的一般步骤:【课后作业】学生根据题意列式学生讨论解法,师生共同归纳学生解方程注意: 增根:将分式方程变形为整式方程时,方程两边同乘以一个含有未知数的整式,并约去分母,有可能产生不适合原方程的解(或根),这种根通常称为增根解分式方程时必须进行检验为什么会产生增根呢?对于原分式方程来说,必须要求使方程中各分式的分母的值均不为零,但方程变形后得到的整式方程则没有这个要求,如果所得整式方程的某个根使原分式方程中至少有一个分式的分母的值为零,也就是说使变形时所乘的整式的值为零,它就不适合原方程,即是原方程的增根分式方程怎样检验?将方程的根代入最简公分母,看它的值是否为零,如果为零,即为增根课 后 反 思板 书 设 计
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-263376.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
