新疆乌鲁木齐市第四中学2018-2019学年高一下学期期中考试数学试卷 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新疆乌鲁木齐市第四中学2018-2019学年高一下学期期中考试数学试卷 WORD版含解析 新疆 乌鲁木齐市 第四 中学 2018 2019 学年 一下 学期 期中考试 数学试卷 WORD 解析
- 资源描述:
-
1、乌鲁木齐市第四中学2018-2019学年度下学期阶段性诊断测试高一年级期中考试数学试卷一、选择题(125=60分)1.已知集合,集合,求( )A. B. C. D. 【答案】B【解析】【分析】解出集合、,再利用集合交集运算律可求出集合。【详解】解不等式,即,解得,.解不等式,解得,因此,故选:B。【点睛】本题考查集合的交集运算,解出不等式得出两个集合是解题的关键,考查计算能力,属于基础题。2.的值等于()A. B. C. D. 【答案】C【解析】;故选C.3.已知向量,且,则( )A. 2B. 3C. 4D. 5【答案】B【解析】【分析】先计算出的坐标,再利用平面向量数量积的坐标运算律并结合条
2、件可得出的值。【详解】,解得,故选:B。【点睛】本题考查平面向量坐标的运算以及数量积的坐标运算,熟悉这些平面向量坐标运算律是解题的关键,考查计算能力,属于基础题。4.下列命题正确的是( )A. 若,则B. 若,则C. 若,则D. 若,则【答案】D【解析】【分析】利用特殊值法和不等式的性质来判断各选项的正误。【详解】对于A选项,当时,A选项错误;对于B选项,取,则,不成立,B选项错误;对于C选项,取,则,不成立,C选项错误;对于D选项,当时,则,由于,所以,D选项正确.故选:D。【点睛】本题考查不等式有关命题的判断,常用不等式的基本性质以及特殊值法去检验,考查逻辑推理能力,属于基础题。5.若三角
3、形的三个内角成等差数列,则第二大的角度数为( )A. 度B. 度C. 度D. 度【答案】C【解析】【分析】设三个角依次为、且,利用等差中项和三角形的内角和定理可得出的大小。【详解】设三个角依次为、且,则有,解得,因此,第二大角的度数为度,故选:C。【点睛】本题考查三角形内角和定理以及等差中项的性质,意在考查学生对这些基础知识的理解和掌握,考查计算能力,属于基础题。6.已知等比数列的公比,则( )A. B. C. D. 【答案】D【解析】【分析】将题中的项利用和表示,并提公因式,约简后可得出结果。【详解】由题意可得,故选:D。【点睛】本题考查等比数列中基本量的计算,解题的关键就是利用等比数列的首
4、项和公比来表示题中的量,并进行约简,考查计算能力,属于中等题。7.已知数列、成等差数列,、成等比数列,则( )A. B. C. D. 【答案】B【解析】【分析】根据等差中项和等比中项的性质分别求出和,于此可求出的值。【详解】由题意可知,是和的等差中项,则,设等比数列、的公比为,则,且为和的等比中项,所以,因此,故选:B。【点睛】本题考查等差中项和等比中项的求解,解题关键就是等差中项和等比中项定义的应用,同时要注意考查等比中项的符号,考查计算能力,属于中等题。8.函数的对称中心为( )A. B. C. D. 【答案】A【解析】【分析】令,得出的表达式,然后对赋值,可得出函数的一个对称中心坐标。【
5、详解】令,得,令,则,且,因此,函数的一个对称中心坐标为,故选:A。【点睛】本题考查正弦型函数对称中心的求解,对于函数的对称中心,令,可得出对称中心的横坐标,纵坐标为,从而可得出函数的对称中心坐标,意在考查学生对正弦函数对称性的理解,属于中等题。9.已知函数,求( )A. B. C. D. 【答案】C【解析】【分析】根据分段函数的定义域以及自变量选择合适的解析式由内到外计算的值。【详解】由题意可得,因此,故选:C。【点睛】本题考查分段函数求值,解题时要根据自变量的取值选择合适的解析式进行计算,另外在求函数值时,遵循由内到外的原则进行,考查计算能力,属于中等题。10.在直角梯形中,则( )A.
6、B. C. D. 【答案】C【解析】【分析】设,计算出的三条边长,然后利用余弦定理计算出。【详解】如下图所示,不妨设,则,过点作,垂足为点,易知四边形是正方形,则,在中,同理可得,在中,由余弦定理得,故选:C。【点睛】本题考查余弦定理求角,在利用余弦定理求角时,首先应将三角形的边长求出来,结合余弦定理来求角,考查计算能力,属于中等题。11.已知数列的通项公式为,它的前项和,则项数等于( )A. B. C. D. 【答案】D【解析】【分析】将数列的通项进行分母有理化得出,并利用裂项法求出数列的前项和,然后解方程,可得出的值。【详解】,令,即,解得,故选:D。【点睛】本题考查裂项求和法,熟悉裂项法
7、求和对数列通项的要求以及裂项法求和的基本步骤是解题的关键,考查计算能力,属于中等题。12.已知等差数列、,其前项和分别为、,则( )A. B. C. D. 【答案】A【解析】【分析】利用等差数列的前项和公式以及等差中项的性质得出,于此可得出结果。【详解】由等差数列的前项和公式以及等差中项的性质得,同理可得,因此,故选:A。【点睛】本题考查等差数列前和公式以及等差中项性质的应用,解题关键在于等差数列下标性质的应用,能起到简化计算的作用,考查计算能力,属于中等题。二、填空题(45=20分)13.等比数列,则_.【答案】.【解析】【分析】利用等比中项的性质得出,于此可计算出的值。【详解】由等比中项的
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-263664.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
