分享
分享赚钱 收藏 举报 版权申诉 / 17

类型河南省商丘市回民中学2019-2020学年高二数学下学期期末考试试题 理(含解析).doc

  • 上传人:a****
  • 文档编号:275686
  • 上传时间:2025-11-22
  • 格式:DOC
  • 页数:17
  • 大小:1.32MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    河南省商丘市回民中学2019-2020学年高二数学下学期期末考试试题 理含解析 河南省 商丘市 回民 中学 2019 2020 学年 数学 学期 期末考试 试题 解析
    资源描述:

    1、河南省商丘市回民中学2019-2020学年高二数学下学期期末考试试题 理(含解析)第I卷(选择题)一、选择题:(在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题:否定是 ()A. B. C. D. 【答案】A【解析】【分析】由全称命题的否定直接改写即可.【详解】因为全称命题的否定为特称命题,所以命题:的否定是:.【点睛】本题主要考查含有一个量词的命题的否定,一般只需要改量词和结论即可,属于基础题型.2.已知,则下列不等式成立的是 ()A. B. C. D. 【答案】B【解析】【分析】利用不等式基本性质即可得出结果.【详解】因为,所以,所以,故选B【点睛】本题主要考查不等式的基本性质

    2、,属于基础题型.3.在单调递增的等差数列中,若,则( )A. B. -C. 0D. 【答案】C【解析】【分析】先设等差数列的公差为,由题中条件列出方程组,求解即可.【详解】设等差数列的公差为,因为,所以有:,解方程组得:;故选:C【点睛】本题主要考查等差数列的通项公式,由题意列方程组求公差和首项即可,属于基础题.4.ABC的内角A、B、C的对边分别为a、b、c.已知,则b=A. B. C. 2D. 3【答案】D【解析】【详解】由余弦定理得,解得(舍去),故选D.【考点】余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b的一元二次方程,再通过解方程求b.运算失误是基础题失

    3、分的主要原因,请考生切记!5.设,则“”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】【分析】本题首先可通过运算得出即以及即,然后根据与之间的关系即可得出结果.【详解】,即,即,因为集合是集合的真子集,所以“”是“”的必要不充分条件.故选:B.【点睛】本题考查充分条件以及必要条件的判定,给出命题“若则”,如果可证明,则说明是的充分条件,如果可证明,则说明是的必要条件,考查推理能力与计算能力,是简单题.6.曲线在点(1,1)处切线的斜率等于( ).A. B. C. 2D. 1【答案】C【解析】试题分析:由,得,故,故切线的斜率为,

    4、故选C.考点:导数的集合意义.7.已知向量且互相垂直,则的值是 ()A. B. 2C. D. 1【答案】A【解析】【分析】由向量垂直,可得对应向量数量积为0,从而可求出结果.【详解】因为,所以,又互相垂直,所以,即,即,所以;故选A【点睛】本题主要考查向量的数量积的坐标运算,属于基础题型.8.若实数x,y满足约束条件则的最大值是()A. 2B. 0C. 1D. 4【答案】C【解析】分析】先由约束条件作出可行域,化目标函数为直线方程的斜截式,由截距的取值范围确定目标函数的最值即可.【详解】由约束条件作出可行域如图所示,目标函数可化为,所以直线在y轴截距越小,则目标函数的值越大,由图像易知,当直线

    5、过点A时,截距最小,所以目标函数最大为.故选C【点睛】本题主要考查简单的线性规划,只需根据约束条件作出可行域,化目标函数为直线的斜截式,求在y轴截距,即可求解,属于基础题型.9.已知AB是抛物线的一条焦点弦,则AB中点C的横坐标是 ()A. 2B. C. D. 【答案】B【解析】【分析】先设两点的坐标,由抛物线的定义表示出弦长,再由题意,即可求出中点的横坐标.【详解】设,C的横坐标为,则,因为是抛物线的一条焦点弦,所以,所以,故.故选B【点睛】本题主要考查抛物线的定义和抛物线的简单性质,只需熟记抛物线的焦点弦公式即可求解,属于基础题型.10.若不等式的解集为,那么不等式的解集为 ()A. B.

    6、 C. D. 【答案】D【解析】【分析】根据题中所给的二次不等式的解集,结合三个二次的关系得到,由根与系数的关系求出的关系,再代入不等式,求解即可.【详解】因为不等式的解集为,所以和是方程的两根,且,所以,即,代入不等式整理得,因为,所以,所以,故选D【点睛】本题主要考查含参数的一元二次不等式的解法,已知一元二次不等式的解求参数,通常用到韦达定理来处理,难度不大.11.已知双曲线的左.右焦点分别为F1,F2,点P在双曲线上,且满足,则的面积为 ()A. 1B. C. D. 【答案】A【解析】【分析】由双曲线的定义可得,联立可求出的长,进而可求三角形的面积.【详解】由双曲线的定义可得,又,两式联

    7、立得:,又,所以,即为直角三角形,所以.故选A【点睛】本题主要考查双曲线的简单性质,双曲线的焦点三角形问题,一般需要借助抛物线的性质,结合题中条件来处理,难度不大.12.若函数有两个零点,则实数a的取值范围为 ()A. B. C. D. 【答案】C【解析】【分析】先求出函数的导函数,利用导函数求出函数的最小值,再根据函数的零点和最值之间的关系即可求出参数的范围.【详解】因为函数的导函数为,令,得,所以当时,函数单调递减;当时,函数单调递增;故当时,函数取最小值,若函数有两个零点,则,即,又因为时,时,恒成立,不存在零点,故,综上:的取值范围是 ,故选C【点睛】本题主要考查导数在函数中的应用,研

    8、究函数零点的问题,通常需要对函数求导,研究函数的单调性和最值,进而可求出参数范围,属于常考题型.第卷(非选择题)二、填空题13.计算_.【答案】【解析】【分析】由微积分基本定理直接计算即可.【详解】,故答案.【点睛】本题主要考查微积分基本定理,根据基本初等函数的导函数,即可求解,属于基础题型.14.已知是等差数列,是等比数列,且 ,. 则数列的前n项和为_.【答案】【解析】【分析】先由题中条件求出数列和数列的通项公式,再由分组求和法,结合等差数列以及等比数列的求和公式即可求出结果.【详解】设的公差为,的公比为因为是等比数列,,所以,所以,又因为是等差数列,所以,故,令,记的前n项和为,则.故答

    9、案为【点睛】本题主要考查数列的求和,需要先求数列的通项公式,再用分组求和法求解即可,常用的数列求和的方法有:分组求和,倒序相加,裂项相消,错位相减等,难度较小.15.若椭圆的方程为,且此椭圆的焦距为4,则实数a_.【答案】4或8【解析】【分析】先由椭圆方程表示出焦距,再由题意列出方程,求解即可.【详解】因为是椭圆的方程,所以且,所以,由椭圆的方程可得,又,所以,解得或.故答案为4或8【点睛】本题主要考查椭圆的简单性质,由椭圆的长半轴、短半轴以及半焦距之间的关系即可求解,属于基础题型.16.函数在上递减,则实数的取值范围是_.【答案】【解析】【分析】求出函数的导数,由函数在上递减,故在上恒成立,

    10、即可求出参数的取值范围;【详解】解:因为的定义域为,又因为在上递减,故在上恒成立,在上恒成立,因为在上单调递减,故答案为:【点睛】本题考查利用导数研究函数的单调性,属于基础题.三、解答题(解答应写出文字说明,证明过程或演算步骤)17.已知正实数a,b满足,求的最小值.【答案】【解析】【分析】只需将化为,与相乘,展开后,利用基本不等式即可求解.【详解】, 当且仅当,即时取等号,的最小值为.【点睛】本题主要考查基本不等式在求最值问题中的应用,通常需要将条件变形整理,与所求式子相乘,利用基本不等式来求最值即可,做题时要注意不等式取等号的条件,属于基础题型.18.已知单增的等比数列的前项和为,若,且是

    11、,的等差中项()求数列的通项公式;()若数列满足,且前项的和为,求【答案】();().【解析】【分析】()利用等差中项求出公比,利用求出首项,可得解.()求出和,得到再用裂项相消求和可得.【详解】解:()依题设,得, 或因为单增的等比数列,所有(舍);所以()由已知得;所以,【点睛】本题考查等比数列通项公式及用裂项法求和.用裂项法求和的裂项原则及规律:(1)裂项原则:一般是前边裂几项,后边就裂几项直到发现被消去项的规律为止(2)消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项19.在中,内角.的对边分别为,且(1)求角的大小;(2)若点满足,且,求的取值范围【答案】(

    12、);().【解析】试题分析:利用正弦定理及余弦定理整理求出,即可求得角的大小;利用余弦定理及常用不等式求解即可解析:()根据正弦定理得又 ()在中,根据余弦定理得即又 又 ,20.已知四棱锥的底面为直角梯形,底面且 是的中点(1)证明:平面平面;(2)求与夹角的余弦值;(3)求二面角的平面角的余弦值【答案】(1)见解析;(2);(3)【解析】【分析】建立空间直角坐标系,求出的坐标,(1)通过证明,利用,即可证明结论成立;(2)求出与的方向向量,由,即可求出结果;(3)在上取一点,则存在,使,求出,再说明为所求二面角的平面角,利用向量夹角公式即可求出结果.【详解】以A为坐标原点,建立空间直角坐标

    13、系,则(1)证明:因为所以,所以由题设知,且,所以平面.又平面,所以平面平面. (2)因为,所以故与夹角的余弦值为. (3)在上取一点,则存在,使,又所以,要使,只需,即,解得,可知当时,N点的坐标为,能使,此时,有,由得,所以为所求二面角的平面角所以,所以二面角的平面角的余弦值为.【点睛】本题主要考查空间向量的方法在几何中的应用,需要考生掌握直线与平面、平面与平面垂直的判定定理以及性质定理,并且熟记空间角的向量计算公式,属于常考题型.21.椭圆,其中,焦距为2,过点的直线与椭圆C交于点A,B,点B在A,M之间又线段AB的中点的横坐标为,且.(1)求椭圆C的标准方程(2)求实数的值【答案】(1

    14、);(2)【解析】【详解】试题分析:(1)运用离心率公式和椭圆的,的关系,解得,即可得到椭圆方程;(2)运用向量共线的知识,设出直线的方程,联立椭圆方程,消去,运用判别式大于,以及韦达定理和中点坐标公式,计算得到,的横坐标,即可得到所求值试题解析:(1)由条件可知,故,椭圆的标准方程是;(2)由,可知三点共线,设点,点,若直线轴,则,不合题意,当A所在直线的斜率存在时,设直线的方程为由消去得,由的判别式,解得, 由,可得,则,将代入方程,得,又,考点:1椭圆的方程和性质;2直线与椭圆的位置关系;3中点坐标公式22.函数,1若函数,求函数的极值2若在恒成立,求实数m的取值范围【答案】(1)极大值为,无极小值;(2)【解析】【详解】试题分析:()根据导数分析函数的单调性,确定函数的极值;()在恒成立,通过变量分离转化为在恒成立,进而构造新函数求最值即可试题解析:解:(1)由得;由得,在递增,在递减所以, 的最大值为,没有极小值(2) 在恒成立 在恒成立设则当时,且当时,设,则在递增又使得时,时,时,时,函数在递增,在递减,在递增由知,所以又又当时,即的取值范围是.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:河南省商丘市回民中学2019-2020学年高二数学下学期期末考试试题 理(含解析).doc
    链接地址:https://www.ketangku.com/wenku/file-275686.html
    相关资源 更多
  • 江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc
  • 江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc
  • 江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx
  • 湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc
  • 湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc
  • 湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc
  • 湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc
  • 江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc
  • 江西省重点高中2022学年高一数学上学期第三次月考试题.docx江西省重点高中2022学年高一数学上学期第三次月考试题.docx
  • 湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc
  • 江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc
  • 江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc
  • 湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc
  • 江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1