《三维设计》2016届(新课标)高考数学(文)5年高考真题备考试题库:第7章 第4节 直线、平面平行的判定与性质 WORD版含答案.DOC
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三维设计 三维设计2016届新课标高考数学文5年高考真题备考试题库:第7章 第4节 直线、平面平行的判定与性质 WORD版含答案 2016 新课 高考 数学 年高 考真题 备考 试题库 直线
- 资源描述:
-
1、20102014年高考真题备选题库第7章 立体几何第4节 直线、平面平行的判定与性质1(2014新课标全国,12分)如图,三棱柱ABCA1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO平面BB1C1C.(1)证明:B1CAB;(2)若ACAB1,CBB160,BC1,求三棱柱ABCA1B1C1的高解:(1)证明:连接BC1,则O为B1C与BC1的交点因为侧面BB1C1C为菱形,所以B1CBC1.又AO平面BB1C1C,所以B1CAO,故B1C平面ABO.由于AB平面ABO,故B1CAB.(2)作ODBC,垂足为D,连接AD.作OHAD,垂足为H.由于BCAO,BCOD,故BC平面
2、AOD,所以OHBC.又OHAD,所以OH平面ABC.因为CBB160,所以CBB1为等边三角形,又BC1,可得OD.由于ACAB1,所以OAB1C.由OHADODOA,且AD,得OH.又O为B1C的中点,所以点B1到平面ABC的距离为.故三棱柱ABCA1B1C1的高为.2(2014浙江,15分)如图,在四棱锥ABCDE中,平面ABC平面BCDE,CDEBED90,ABCD2,DEBE1,AC.(1)证明:AC平面BCDE;(2)求直线AE与平面ABC所成的角的正切值解:(1)证明:连接BD,在直角梯形BCDE中,由DEBE1,CD2,得BDBC,由AC,AB2,得AB2AC2BC2,即ACB
3、C.又平面ABC平面BCDE,从而AC平面BCDE.(2)在直角梯形BCDE中,由BDBC,DC2.得BDBC,又平面ABC平面BCDE,所以BD平面ABC.作EFBD,与CB延长线交于F,连接AF,则EF平面ABC.所以EAF是直线AE与平面ABC所成的角在RtBEF中,由EB1,EBF,得EF,BF;在RtACF中,由AC,CF,得AF.在RtAEF中,由EF,AF,得tanEAF.所以直线AE与平面ABC所成的角的正切值是.3(2014湖南,12分)如图所示,已知二面角MN的大小为60 ,菱形ABCD 在面 内, A,B两点在棱 MN上, BAD60, E是AB 的中点,DO面 ,垂足为
4、 O.(1)证明:AB 平面ODE ;(2)求异面直线BC 与OD 所成角的余弦值解:(1)证明:如图,因为DO,AB所以DOAB.连接BD,由题设知,ABD是正三角形,又E是AB的中点,所以DEAB.而DODED,故AB平面ODE.(2)因为BCAD,所以BC与OD所成的角等于AD与OD所成的角,即ADO是BC与OD所成的角由(1)知,AB平面ODE,所以ABOE.又DEAB,于是DEO是二面角MN的平面角,从而DEO60.不妨设AB2,则AD2,易知DE.在RtDOE中,DODEsin60.连接AO,在RtAOD中,cosADO.故异面直线BC与OD所成角的余弦值为.4(2014山东,12
5、分)如图,四棱锥PABCD 中, AP平面PCD,ADBC,ABBCAD,E,F分别为线段AD,PC 的中点(1)求证: AP平面BEF;(2)求证:BE平面PAC .证明:(1)设ACBEO,连接OF,EC.由于E为AD的中点,ABBCAD,ADBC,所以AEBC,AEABBC,因此四边形ABCE为菱形,所以O为AC的中点又F为PC 的中点,因此在PAC中,可得APOF.又OF平面BEF,AP平面BEF.所以AP平面BEF.(2)由题意知EDBC,EDBC.所以四边形BCDE为平行四边形,因此BECD.又AP平面PCD,所以APCD,因此APBE.因为四边形ABCE为菱形,所以BEAC.又A
6、PACA,AP,AC平面PAC,所以BE平面PAC.5(2014江苏,14分)如图,在三棱锥PABC中,D,E,F分别为棱PC,AC,AB的中点已知PAAC,PA6,BC8,DF5.求证: (1)直线PA平面DEF;(2)平面BDE平面ABC.证明:(1)因为D,E分别为棱PC,AC的中点,所以DEPA.又因为PA平面DEF,DE平面DEF,所以直线PA平面DEF.(2)因为D,E,F分别为棱PC,AC,AB的中点,PA6,BC8,所以DEPA3,EFBC4.又因为DF5,故DF2DE2EF2,所以DEF90,即DEEF.又PAAC,DEPA,所以DEAC.因为ACEFE,AC平面ABC,EF
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-285200.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
2018-2019学年高中语文人教版选修中国小说欣赏课件:第三单元5“三言” .ppt
