《创新方案》2015高考数学(理)一轮突破热点题型:第5章 第3节 等比数列及其前N项和.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新方案 创新方案2015高考数学理一轮突破热点题型:第5章 第3节等比数列及其前N项和 创新 方案 2015 高考 数学 一轮 突破 热点 题型 等比数列 及其
- 资源描述:
-
1、高考资源网( ),您身边的高考专家第三节等比数列及其前n项和 考点一等比数列的判定与证明 例1已知数列an的前n项和为Sn, a11,Sn14an2(nN*),若bnan12an,求证:bn是等比数列自主解答an2Sn2Sn14an124an24an14an.2,S2a1a24a12,a25.b1a22a13.数列bn是首项为3,公比为2的等比数列【互动探究】保持本例条件不变,若cn,证明:cn是等比数列证明:由例题知,bn32n1an12an,3.数列是首项为2,公差为3的等差数列2(n1)33n1,an(3n1)2n2,cn2n2.2.数列cn为等比数列【方法规律】等比数列的判定方法证明一
2、个数列为等比数列常用定义法与等比中项法,其他方法只用于选择、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可已知等比数列an的公比为q,记bnam(n1)1am(n1)2am(n1)m,cnam(n1)1am(n1)2am(n1)m(m,nN*),则以下结论一定正确的是()A数列bn为等差数列,公差为qmB数列bn为等比数列,公比为q2mC数列cn为等比数列,公比为qm2D数列cn为等比数列,公比为qmm解析:选Cbnam(n1)1(1qq2qm1),qm,故数列bn为等比数列,公比为qm,选项A、B均错误;cnaq12(m1),m(qm)mqm2,故数列cn为
3、等比数列,公比为qm2,D错误,故选C.高频考点考点二 等比数列的基本运算1等比数列的基本运算是高考的常考内容,题型既有选择、填空题,也有解答题,难度适中,属中低档题2高考对等比数列的基本运算的考查常有以下几个命题角度:(1)化基本量求通项;(2)化基本量求特定项;(3)化基本量求公比;(4)化基本量求和例2(1)(2013新课标全国卷)等比数列an的前n项和为Sn,已知S3a210a1,a59,则a1()A. B C. D(2)(2012浙江高考)设公比为q(q0)的等比数列an的前n项和为Sn.若S23a22,S43a42,则q_.(3)(2013湖北高考)已知等比数列an满足:|a2a3
4、|10,a1a2a3125.求数列an的通项公式;是否存在正整数m,使得1?若存在,求m的最小值;若不存在,说明理由自主解答(1)由已知条件及S3a1a2a3,得a39a1,设数列an的公比为q,则q29.所以a59a1q481a1,得a1.(2)由S23a22,S43a42作差,可得a3a43a43a2,即2a4a33a20,所以2q2q30,解得q或q1(舍)(3)设等比数列an的公比为q,则由已知可得解得或故an3n1,或an5(1)n1.若an3n1,则n1,故是首项为,公比为的等比数列,从而.若an(5)(1)n1,则(1)n1,故是首项为,公比为1的等比数列,从而故1.综上,对任何
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-287999.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
2018-2019学年高二语文苏教版选修唐宋八大家散文选读课件:专题一 第1课 原 毁 .ppt
