2023届高三数学 寒假二轮微专题45讲 08.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023届高三数学 寒假二轮微专题45讲 08 2023 届高三 数学 寒假 二轮 专题 45
- 资源描述:
-
1、 利用剪刀模型估计双变量 双变量导数中的剪刀模型起源于2015年天津卷,在2021年新高考1卷中名满天下!该模型的实质是凸凹函数切割线放缩(牛顿切线法),值得注意的是,该方法已经出现在人教版新教材选择性必修二82页阅读材料中,未来完全可能再度出现在高考试题中!本节我们就通过这两道高考题展示其基本原理与解题方法.一 基本原理1. 函数凸凹性:若函数在区间上有定义,若,则称为区间上的凸函数. 反之,称为区间上的凹函数. 2. 切线不等式: 在上为凸函数,有. 反之,若为区间上的凹函数,则,有.证明:取定,令,则,再次求导可得. 故在区间上递减,在区间上递增,故存在最小值,即,即证毕.注:切线不等式
2、是剪刀模型的理论依据. 3.剪刀模型已知函数为定义域上的凸函数,且图象与交于两点,其横坐标为,这样如下图所示,我们可以利用凸函数的切线与的交点将的范围予以估计,这便是切线放缩的基本原理. 如图,在函数图象先减后增的情形下,两条切线和两条割线即可估计出零点的一个上下界,而切割线的方程均为一次函数,这样我们就可以得到一个显式解(精确解)的估计,下面我们通过例子予以分析.二应用分析例1.(2021新课标1卷22题)已知函数.(1)讨论的单调性;(2)设为两个不相等的正数,且,证明:.解析:注意到函数不含参数,那就求导分析凸凹性.,再求,在其定义域上分别是凹函数与凸函数.另一方面,即,若令,则原命题等
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
