2023届高三数学一轮复习大题专练 08 导数(构造函数证明不等式2).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023届高三数学一轮复习大题专练 08 导数构造函数证明不等式2 2023 届高三 数学 一轮 复习 大题专练 导数 构造 函数 证明 不等式
- 资源描述:
-
1、一轮大题专练8导数(构造函数证明不等式2)1已知函数(1)讨论函数的单调性;(2)证明:当时,解:(1)函数的定义域为,令,当时,此时在上单调递减;当时,为二次函数,若,即时,的图象为开口向下的抛物线且,则,此时在上5单调递减;当,即或时,令,解得,当时,的图象为开口向下的抛物线,当,时,则,单调递减,当,时,则,单调递增;当时,的图象为开口向上的抛物线,当,则,单调递减,当,则,单调递增;综上,当时,在上单调递减,在上单调递增;当时,在上单调递减,在上单调递增;当时,在上单调递减(2)证明:由(1)知,当时,在上单调递减,在上单调递增,因此对任意恒有(1),即,又,要证,只需证,令,则,则在
2、,上单调递增,又(1),当时,恒成立,则在,上单调递增,又(1),对任意恒有(1),即,即得证2已知函数(1)求在处的切线方程;(2)已知关于的方程有两个实根,当时,求证:解:(1),故时的切线方程是,即;(2)证明:由(1)知:在递减,在递增,当时,方程有2个实根,则,令,则,令,则,故在递增,故,故在递增,故,故,故,故,故时,故,故3已知函数与是自然对数的底数,(1)讨论关于的方程根的个数;(2)当,时,证明:解:(1)令,当时,不满足当时,因此在区间上单调递增,(1),在区间上单调递减,根据零点定理,在上存在唯一零点当,在上单调递增,(1),(e),根据零点定理,在上存在唯一零点,因此
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
