《新步步高》2017版高考数学北师大版(理)一轮复习 第2章 函数概念与基本初等函数Ⅰ 2.9 实际问题的函数建模 文档.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新步步高 新步步高2017版高考数学北师大版理一轮复习 第2章 函数概念与基本初等函数 2.9 实际问题的函数建模 文档 步步高 2017 高考 数学 北师大 一轮 复习 函数 概念 基本 初等
- 资源描述:
-
1、高考资源网() 您身边的高考专家1.几类函数模型及其增长差异(1)几类函数模型函数模型函数解析式一次函数模型f(x)axb (a、b为常数,a0)反比例函数模型f(x)b (k,b为常数且k0)二次函数模型f(x)ax2bxc(a,b,c为常数,a0)指数函数模型f(x)baxc(a,b,c为常数,b0,a0且a1)对数函数模型f(x)blogaxc(a,b,c为常数,b0,a0且a1)幂函数模型f(x)axnb (a,b为常数,a0)(2)三种函数模型的性质函数性质yax(a1)ylogax(a1)yxn(n0)在(0,)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图像
2、的变化随x的增大逐渐表现为与y轴平行随x的增大逐渐表现为与x轴平行随n值变化而各有不同值的比较存在一个x0,当xx0时,有logaxxn1)的增长速度会超过并远远大于yxa(a0)的增长速度.()(5)“指数爆炸”是指数型函数yabxc(a0,b0,b1)增长速度越来越快的形象比喻.()(6)指数函数模型,一般用于解决变化较快,短时间内变化量较大的实际问题.()1.在某个物理实验中,测量得变量x和变量y的几组数据,如下表:x0.500.992.013.98y0.990.010.982.00则对x,y最适合的拟合函数是()A.y2xB.yx21C.y2x2D.ylog2x答案D解析根据x0.50
3、,y0.99,代入计算,可以排除A;根据x2.01,y0.98,代入计算,可以排除B,C;将各数据代入函数ylog2x,可知满足题意.故选D.2.如图是张大爷晨练时所走的离家距离(y)与行走时间(x)之间函数关系的图像,若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是()答案D解析由图可知,张大爷开始匀速离家直线行走,中间一段离家距离不变,说明在以家为圆心的圆周上运动,最后匀速回家.故选D.3.某市生产总值连续两年持续增加.第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A.B.C.D.1答案D解析设年平均增长率为x,则(1x)2(1p)(1q),x1.
4、4.一水池有2个进水口,1个出水口,两个进水口的进水速度如图甲、乙所示,出水口的排水速度如图丙所示,某天0点到6点,该水池的蓄水量如图丁所示.给出以下3个论断:0点到3点只进水不出水;3点到4点不进水只出水;4点到6点不进水不出水.则一定正确的论断序号是_.答案解析从0点到3点,两个进水口的进水量为9,故正确;由排水速度知正确;4点到6点可以是不进水,不出水,也可以是开一个进水口(速度快的)、一个排水口,故不正确.5.(2015四川)某食品的保鲜时间y(单位:小时)与储藏温度x(单位:)满足函数关系yekxb(e2.718为自然对数的底数,k,b为常数).若该食品在0的保鲜时间是192小时,在
5、22的保鲜时间是48小时,则该食品在33的保鲜时间是_小时.答案24解析由题意得e22k,e11k,x33时,ye33kb(e11k)3eb3eb19224.题型一用函数图像刻画变化过程例1(1)设甲、乙两地的距离为a(a0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图像为()(2)物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如
6、图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是()答案(1)D(2)B解析(1)y为“小王从出发到返回原地所经过的路程”而不是位移,故排除A,C;又因为小王在乙地休息10分钟,故排除B,故选D.(2)由运输效率(单位时间的运输量)逐步提高得,曲线上的点的切线斜率应该逐渐增大,故函数的图像应一直是下凹的,故选B.思维升华判断函数图像与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图像.(2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化快慢等特点,结合图像的变化趋势,验证是否吻合,从中排除不符合
7、实际的情况,选择出符合实际情况的答案.已知正方形ABCD的边长为4,动点P从B点开始沿折线BCDA向A点运动.设点P运动的路程为x,ABP的面积为S,则函数Sf(x)的图像是()答案D解析依题意知当0x4时,f(x)2x;当4x8时,f(x)8;当8x12时,f(x)242x,观察四个选项知,选D.题型二已知函数模型的实际问题例2候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量Q之间的关系为vablog3(其中a、b是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1m/s.(1)
8、求出a、b的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s,则其耗氧量至少要多少个单位?解(1)由题意可知,当这种鸟类静止时,它的速度为0m/s,此时耗氧量为30个单位,故有ablog30,即ab0;当耗氧量为90个单位时,速度为1m/s,故ablog31,整理得a2b1.解方程组得(2)由(1)知,v1log3.所以要使飞行速度不低于2m/s,则有v2,即1log32,即log33,解得Q270.所以若这种鸟类为赶路程,飞行的速度不能低于2m/s,则其耗氧量至少要270个单位.思维升华求解所给函数模型解决实际问题的关注点(1)认清所给函数模型,弄清哪些量为待定系数.(2)根据已知利
9、用待定系数法,确定模型中的待定系数.(3)利用该模型求解实际问题.某般空公司规定,乘飞机所携带行李的质量(kg)与其运费(元)由如图的一次函数图像确定,那么乘客可免费携带行李的质量最大为_kg.答案19解析由图像可求得一次函数的解析式为y30x570,令30x5700,解得x19.题型三构造函数模型的实际问题命题点1构建二次函数模型例3某汽车销售公司在A,B两地销售同一种品牌的汽车,在A地的销售利润(单位:万元)为y14.1x0.1x2,在B地的销售利润(单位:万元)为y22x,其中x为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是()A.10.5万元B.1
10、1万元C.43万元D.43.025万元答案C解析设公司在A地销售该品牌的汽车x辆,则在B地销售该品牌的汽车(16x)辆,所以可得利润y4.1x0.1x22(16x)0.1x22.1x320.1(x)20.132.因为x0,16,且xN,所以当x10或11时,总利润取得最大值43万元.命题点2构建指数函数、对数函数模型例4(1)世界人口在过去40年翻了一番,则每年人口平均增长率约是(参考数据lg20.3010,100.00751.017)()A.1.5%B.1.6%C.1.7%D.1.8%(2)某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n次涨停(每次上涨10%),又经历了n
11、次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为()A.略有盈利B.略有亏损C.没有盈利也没有亏损D.无法判断盈亏情况答案(1)C(2)B解析(1)设每年人口平均增长率为x,则(1x)402,两边取以10为底的对数,则40lg(1x)lg2,所以lg(1x)0.0075,所以100.00751x,得1x1.017,所以x1.7%.(2)设该股民购进这支股票的价格为a元,则经历n次涨停后的价格为a(110%)na1.1n元,经历n次跌停后的价格为a1.1n(110%)na1.1n0.9na(1.10.9)n0.99naa,故该股民这支股票略有亏损.命题点3构建分段函数模型
12、例5某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km但不超过8km时,超过部分按每千米2.15元收费;超过8km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了_km.答案9解析设出租车行驶xkm时,付费y元,则y由y22.6,解得x9.思维升华构建数学模型解决实际问题,要正确理解题意,分清条件和结论,理顺数量关系,将文字语言转化成数学语言,建立适当的函数模型,求解过程中不要忽略实际问题对变量的限制.(1)一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3mg/mL,在停止喝
13、酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据道路交通安全法规定:驾驶员血液中的酒精含量不得超过0.09 mg/mL,那么,此人至少经过_小时才能开车.(精确到1小时)(2)某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业需要更新设备的年数为()A.10B.11C.13D.21答案(1)5(2)A解析(1)设经过x小时才能开车.由题意得0.3(125%)x0.09,0.75x0.3,xlog0.750.34.1
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-302683.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
