河南省豫北2023届高三数学(文)上学期10月大联考试卷(Word版附答案).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河南省 2023 届高三 数学 上学 10 联考 试卷 Word 答案
- 资源描述:
-
1、高三文科数学考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本试卷主要命题范围:集合、常用逻辑用语、函数、导数及其应用、三角函数、解三角形、平面向量.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.
2、 已知集合,则( )A. B. C. D. 【答案】D【解析】【详解】,.故选:D2. 在中,则外接圆的半径为( )A. 1B. C. D. 2【答案】A【解析】【详解】由正弦定理,则,故外接圆的半径为1.故选:A.3. 已知为平面上四点,则“向量”是“直线”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】【详解】若,则四点共线或,若,则,故“向量”是“直线”的必要不充分条件.故选:B4. 已知平面向量与的夹角为,若,则( )A. 2B. 3C. D. 4【答案】D【解析】【详解】由平方可得,因为,平面向量与的夹角为,所以即,解得或(舍
3、去),故选:D5. 若,则( )A. B. C. D. 【答案】C【解析】【详解】,.故选:C6. 我们知道二氧化碳是温室性气体,是全球变暖的主要元凶在室内二氧化碳含量的多少也会对人体健康带来影响下表是室内二氧化碳浓度与人体生理反应的关系:室内二氧化碳浓度(单位:)人体生理反应不高于空气清新,呼吸顺畅空气浑浊,觉得昏昏欲睡感觉头痛,嗜睡,呆滞,注意力无法集中大于可能导致缺氧,造成永久性脑损伤,昏迷甚至死亡室内空气质量标准和公共场所卫生检验办法给出了室内二氧化碳浓度的国家标准为:室内二氧化碳浓度不大于(即为),所以室内要经常通风换气,保持二氧化碳浓度水平不高于标准值经测定,某中学刚下课时,一个教
4、室内二氧化碳浓度为,若开窗通风后二氧化碳浓度与经过时间(单位:分钟)的关系式为,则该教室内的二氧化碳浓度达到国家标准需要开窗通风时间至少约为(参考数据:,)( )A. 分钟B. 分钟C. 分钟D. 分钟【答案】A【解析】【详解】由题意可知,当时,可得,则,由,可得,故该教室内的二氧化碳浓度达到国家标准需要开窗通风时间至少约为分钟.故选:A.7. 在中,角A,B,C的对边分别为a,b,c,则为( )A. 钝角三角形B. 正三角形C. 直角三角形D. 等腰直角三角形【答案】C【解析】【详解】由结合正弦定理可得,即,所以,所以,因为,所以,因为,所以,故为直角三角形,故选:C8. 已知角的终边经过点
5、,则的值为( )A. B. C. 1或D. 或【答案】D【解析】【详解】由题意可得:点P与原点间的距离,.当时,则,故;当时,则,故故选:D.9. 在中,为边的中点,在边上,且,与交于点,若,则( )A. B. C. D. 【答案】A【解析】【详解】以为基底向量,则有:三点共线,则,又三点共线,且为边的中点,则,解得,即.,则.故选:A.10. 已知函数的最大值与最小值之和为6,则实数a的值为( )A. 2B. 3C. 4D. 5【答案】B【解析】【详解】解:,定义域为,令,因为,所以函数为奇函数,设的最大值为,最小值为,所以,因为,函数的最大值与最小值之和为,所以,解得.故选:B11. 已知
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-305021.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
