21版高考数学人教A版浙江专用大一轮复习核心考点·精准研析 3-4-1 导数与不等式 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 21版高考数学人教A版浙江专用大一轮复习核心考点·精准研析 3-4-1导数与不等式 WORD版含解析 21 高考 学人 浙江 专用 一轮 复习 核心 考点 精准 研析 导数 不等式 WORD 解析
- 资源描述:
-
1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。核心考点精准研析考点一导数法证明不等式【典例】已知函数f(x)=xex-1-ax+1,曲线y=f(x)在点(2,f(2)处的切线l的斜率为3e-2.(1)求a的值及切线l的方程.(2)证明:f(x)0.【解题导思】序号题目拆解(1)利用导数的几何意义求切线方程利用求导的方法求出函数切线的斜率,再利用切线斜率的已知条件求出a的值,再将切点横坐标代入函数解析式求出切点纵坐标,再利用点斜式求出切线方程,最后转化为切线的一般式方程.(2)用导数法证明不等式利用求导的方法判断函数的
2、单调性,从而证出不等式成立【解析】(1)由f(x)=xex-1-ax+1,得f(x)=(x+1)ex-1-a,因为曲线y=f(x)在点(2,f(2)处的切线l的斜率为3e-2,所以f(2)=3e-a=3e-2,解得a=2, 所以f(2)=2e-4+1=2e-3,故切线l的方程为:y-(2e-3)=(3e-2)(x-2), 即(3e-2)x-y-4e+1=0.所以a=2,切线l的方程为(3e-2)x-y-4e+1=0.(2)由(1),可得f(x)=xex-1-2x+1,f(x)=(x+1)ex-1-2,所以当x(-,-1时,f(x)-1),则g(x)=(x+2)ex-10,所以当x(-1,+)时
3、,g(x)单调递增,即f(x)单调递增,又因为f(1)=0,所以当x(-1,1)时,f(x)0, 所以f(x)在(-,1)上单调递减,在(1,+)上单调递增.所以f(x)f(1)=0.1.利用导数证明不等式f(x)g(x)的基本方法(1)若f(x)与g(x)的最值易求出,可直接转化为证明f(x)ming(x)max.(2)若f(x)与g(x)的最值不易求出,可构造函数h(x)=f(x)-g(x),然后根据函数h(x)的单调性或最值,证明h(x)0.2.证明不等式时的一些常见结论(1)ln xx-1,等号当且仅当x=1时取到.(2)exx+1,等号当且仅当x=0时取到.(3)ln xx0.(4)
4、ln(x+1)x,x-1,等号当且仅当x=0时取到.(2018全国卷改编)已知函数f=aex-ln x-1.证明:当a时,f0.【证明】当a时,f(x)-ln x-1.设g(x)=-ln x-1,则g(x)=-.当0x1时,g(x)1时,g(x)0.所以x=1是g(x)的最小值点.故当x0时,g(x)g(1)=0.因此,当a时,f(x)0.考点二由不等式恒成立求参数命题精解读考什么:(1)考查利用导数研究函数单调性、求最值、不等式等问题.(2)考查数学运算、直观想象、逻辑推理的核心素养及转化与化归、分类与整合等数学思想.怎么考:与导数法研究函数单调性、最值等知识相结合考查不等式恒成立求参数等问
5、题.新趋势:以导数法研究函数单调性、求函数极值、最值、导数的几何意义等知识交汇考查为主.学霸好方法不等式恒成立问题中的常用结论(1)f(x)a恒成立f(x)mina,(2)f(x)b恒成立f(x)maxb,(3)f(x)g(x)恒成立,构造F(x)=f(x)-g(x),则F(x)min0.(4)x1M,x2N,f(x1)g(x2)f(x1)ming(x2)max.单变量不等式恒成立问题【典例】已知函数f(x)=mex-x2.(1)若m=1,求曲线y=f(x)在(0,f(0)处的切线方程.(2)若关于x的不等式f(x)x(4-mex)在0,+)上恒成立,求实数m的取值范围.【解析】(1)当m=1
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-305127.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
