21版高考数学人教A版浙江专用大一轮复习核心考点·精准研析 5-3 平面向量的数量积及应用举例 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 21版高考数学人教A版浙江专用大一轮复习核心考点·精准研析 5-3平面向量的数量积及应用举例 WORD版含解析
- 资源描述:
-
1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。核心考点精准研析考点一平面向量的数量积的基本概念及运算1.(2020杭州模拟)已知正六边形O-P1P2P3P4P5的边长为1,则 (i=1,2,3,4,5)的最大值是()A.1B.C.D.2【解析】选B.如图,当i=1,2,3,4,5时,(i=1,2,3,4,5)的值相应是1,1,0,-,故最大值为.2.已知点A(-1,1),B(1,2),C(-2,-1),D(3,4),则向量在方向上的投影为()A.B.C.-D.-【解析】选A.=(2,1),=(5,5),由定义知在方向
2、上的投影为|cos =.3.已知|a|=|b|=1,向量a与b的夹角为45,则(a+2b)a=_.【解析】因为|a|=|b|=1,向量a与b的夹角为45,所以(a+2b)a=a2+2ab=|a|2+2|a|b|cos 45=1+.答案:1+【一题多解】坐标法解T3,因为|a|=|b|=1,向量a与b的夹角为45,可设a=,b=(1,0),则a+2b=, (a+2b)a=+=1+.答案:1+平面向量数量积的三种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即ab=|a|b|cos .(2)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则ab=x1x2
3、+y1y2.(3)对于数量积与线性运算的综合问题,可先运用数量积的运算律,几何意义等化简,再运算.考点二平面向量的数量积在几何中的应用【典例】1.已知O,N,P在ABC所在平面内,且|=|=|,+=0,且=,则点O,N,P依次是ABC的()世纪金榜导学号A.重心外心垂心B.重心外心内心C.外心重心垂心D.外心重心内心(注:三角形的三条高线交于一点,此点为三角形的垂心)2.在ABC中,A=60,AB=3,AC=2.若=2,=-(R),且=-4,则的值为_.【解题导思】序号联想解题1看到三个题设条件,想到ABC的“三心”2看到“=-4”,想到和分别用,来表示【解析】1.选C.由|=|=|知,O为A
4、BC的外心;由+=0知,N为ABC的重心;因为=,所以(-)=0,所以=0,所以,即CAPB,同理APBC,CPAB,所以P为ABC的垂心.2.=32cos 60=3,=+,则=(-)=3+4-9-3=-4=.答案:1.平面向量中数量积的三种求法(1)利用定义求解.(2)利用向量的坐标运算求解.(3)利用向量数量积的几何意义求解.2.向量的数量积在平面几何应用中的解题策略(1)利用运算律结合图形先化简再运算.(2)注意向量的夹角与已知平面几何中的角的关系(相等还是互补).【拓展】三角形四心的向量表示在三角形ABC中,点O为平面内一点,若满足:(1)+=0,则点O为三角形的重心.(2)|=|=|
5、,则点O为三角形的外心.(3)=,则点O为三角形的垂心.(4)|+|+|=0,则点O为三角形的内心.平面四边形ABCD中,+=0,(-)=0,则四边形ABCD是()A.矩形B.正方形C.菱形D.梯形【解析】选C.因为+=0,所以=-=,所以四边形ABCD是平行四边形.又(-)=0,所以四边形对角线互相垂直,所以四边形ABCD是菱形.考点三 平面向量数量积的综合应用命题精解读考什么:(1)平面向量的模,平面向量的夹角,平行、垂直问题;(2)考查数学运算等核心素养,以及数形结合,转化与化归的思想.怎么考:与平面向量基本定理,坐标运算,平面几何结合考查求模,夹角,夹角余弦值,参数等等.学霸好方法1.
6、在求向量的模时,一定要注意公式|a|=的应用,即将向量的长度(或模)转化为向量数量积.2.求两个向量的夹角,常常利用两个向量夹角的余弦公式,求其夹角的余弦,然后利用余弦函数的单调性求角.3.解决关于平面向量的平行与垂直问题,其关键是充分利用平行与垂直的充要条件,得出一个等式,然后求解.平面向量的模【典例】1.(2019全国卷)已知=(2,3),=(3,t),|=1,则=()A.-3B.-2C.2D.3【解析】选C.因为=-=(1,t-3),又因为|=1,即12+(t-3)2=12,解得t=3,所以=(1,0),所以=2.2.已知直角梯形ABCD中,ADBC,ADC=90,AD=2,BC=1,P
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-305142.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
