分享
分享赚钱 收藏 举报 版权申诉 / 12

类型21版高考数学人教A版浙江专用大一轮复习核心考点·精准研析 5-3 平面向量的数量积及应用举例 WORD版含解析.doc

  • 上传人:a****
  • 文档编号:305142
  • 上传时间:2025-11-23
  • 格式:DOC
  • 页数:12
  • 大小:1.12MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    21版高考数学人教A版浙江专用大一轮复习核心考点·精准研析 5-3平面向量的数量积及应用举例 WORD版含解析
    资源描述:

    1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。核心考点精准研析考点一平面向量的数量积的基本概念及运算1.(2020杭州模拟)已知正六边形O-P1P2P3P4P5的边长为1,则 (i=1,2,3,4,5)的最大值是()A.1B.C.D.2【解析】选B.如图,当i=1,2,3,4,5时,(i=1,2,3,4,5)的值相应是1,1,0,-,故最大值为.2.已知点A(-1,1),B(1,2),C(-2,-1),D(3,4),则向量在方向上的投影为()A.B.C.-D.-【解析】选A.=(2,1),=(5,5),由定义知在方向

    2、上的投影为|cos =.3.已知|a|=|b|=1,向量a与b的夹角为45,则(a+2b)a=_.【解析】因为|a|=|b|=1,向量a与b的夹角为45,所以(a+2b)a=a2+2ab=|a|2+2|a|b|cos 45=1+.答案:1+【一题多解】坐标法解T3,因为|a|=|b|=1,向量a与b的夹角为45,可设a=,b=(1,0),则a+2b=, (a+2b)a=+=1+.答案:1+平面向量数量积的三种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即ab=|a|b|cos .(2)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则ab=x1x2

    3、+y1y2.(3)对于数量积与线性运算的综合问题,可先运用数量积的运算律,几何意义等化简,再运算.考点二平面向量的数量积在几何中的应用【典例】1.已知O,N,P在ABC所在平面内,且|=|=|,+=0,且=,则点O,N,P依次是ABC的()世纪金榜导学号A.重心外心垂心B.重心外心内心C.外心重心垂心D.外心重心内心(注:三角形的三条高线交于一点,此点为三角形的垂心)2.在ABC中,A=60,AB=3,AC=2.若=2,=-(R),且=-4,则的值为_.【解题导思】序号联想解题1看到三个题设条件,想到ABC的“三心”2看到“=-4”,想到和分别用,来表示【解析】1.选C.由|=|=|知,O为A

    4、BC的外心;由+=0知,N为ABC的重心;因为=,所以(-)=0,所以=0,所以,即CAPB,同理APBC,CPAB,所以P为ABC的垂心.2.=32cos 60=3,=+,则=(-)=3+4-9-3=-4=.答案:1.平面向量中数量积的三种求法(1)利用定义求解.(2)利用向量的坐标运算求解.(3)利用向量数量积的几何意义求解.2.向量的数量积在平面几何应用中的解题策略(1)利用运算律结合图形先化简再运算.(2)注意向量的夹角与已知平面几何中的角的关系(相等还是互补).【拓展】三角形四心的向量表示在三角形ABC中,点O为平面内一点,若满足:(1)+=0,则点O为三角形的重心.(2)|=|=|

    5、,则点O为三角形的外心.(3)=,则点O为三角形的垂心.(4)|+|+|=0,则点O为三角形的内心.平面四边形ABCD中,+=0,(-)=0,则四边形ABCD是()A.矩形B.正方形C.菱形D.梯形【解析】选C.因为+=0,所以=-=,所以四边形ABCD是平行四边形.又(-)=0,所以四边形对角线互相垂直,所以四边形ABCD是菱形.考点三 平面向量数量积的综合应用命题精解读考什么:(1)平面向量的模,平面向量的夹角,平行、垂直问题;(2)考查数学运算等核心素养,以及数形结合,转化与化归的思想.怎么考:与平面向量基本定理,坐标运算,平面几何结合考查求模,夹角,夹角余弦值,参数等等.学霸好方法1.

    6、在求向量的模时,一定要注意公式|a|=的应用,即将向量的长度(或模)转化为向量数量积.2.求两个向量的夹角,常常利用两个向量夹角的余弦公式,求其夹角的余弦,然后利用余弦函数的单调性求角.3.解决关于平面向量的平行与垂直问题,其关键是充分利用平行与垂直的充要条件,得出一个等式,然后求解.平面向量的模【典例】1.(2019全国卷)已知=(2,3),=(3,t),|=1,则=()A.-3B.-2C.2D.3【解析】选C.因为=-=(1,t-3),又因为|=1,即12+(t-3)2=12,解得t=3,所以=(1,0),所以=2.2.已知直角梯形ABCD中,ADBC,ADC=90,AD=2,BC=1,P

    7、是腰DC上的动点,则|+3|的最小值为_.世纪金榜导学号【解析】建立平面直角坐标系如图所示,则A(2,0),设P(0,y),C(0,b),则B(1,b).所以+3=(2,-y)+3(1,b-y)=(5,3b-4y),所以|+3|=(0yb),当y=b时,|+3|取得最小值5.答案:51.求向量的模有哪些方法?提示:(1)公式法,利用|a|=及(ab)2=|a|22ab+|b|2,把向量的模的运算转化为数量积运算.(2)几何法,利用向量的几何意义.2.求向量模的最值(范围)有哪些方法?提示:(1)代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解.(2)几何法(数形结合法),弄清所求的

    8、模表示的几何意义,结合动点表示的图形求解.平面向量的夹角【典例】1.已知非零向量m,n满足4|m|=3|n|,cos =,若n与tm-n夹角为钝角,则实数t的取值范围是世纪金榜导学号()A.t4B.t4且t0C.t4D.t4且t0【解析】选B.n与tm-n夹角为钝角等价于n(tm-n)0且n与tm-n不共线,所以tmn-n20且t0,即tn2-n20,且t0,解得t4且t0.2.(2020杭州模拟)已知|a|=1,|b|=6,a(b-a)=2,则向量a与向量b的夹角是()A.B.C.D.【解析】选C.由条件得ab-a2=2,所以ab=2+a2=3=|a|b|cos =16cos ,所以cos

    9、=,因为0,所以=.1.向量夹角问题如何求解?提示:若题目给出向量的坐标表示,可直接运用公式cos =求解.没有坐标时可用公式cos =.研究向量夹角应注意“共起点”,注意取值范围是0,.2.对于两个不共线的向量,数量积的符号与夹角有何关系?提示:当数量积大于0时,夹角为锐角;当数量积等于0时,夹角为直角;当数量积小于0时,夹角为钝角.平行、垂直问题【典例】1.已知向量a=(1,2),a-b=(4,5),c=(x,3),若(2a+b)c,则x=()A.-1 B.-2C.-3 D.-4【解析】选C.因为a=(1,2),a-b=(4,5),所以b=a-(a-b)=(1,2)-(4,5)=(-3,-

    10、3),所以2a+b=2(1,2)+(-3,-3)=(-1,1).又因为c=(x,3),(2a+b)c,所以-13-x=0,所以x=-3.2.(2019全国卷)已知非零向量a,b满足|a|=2|b|,且(a-b)b,则a与b的夹角为()世纪金榜导学号A.B.C.D.【解析】选B.设夹角为,因为(a-b)b,所以(a-b)b=ab-b2=0,所以ab=b2,所以cos =,又0,所以a与b的夹角为.两个非零向量垂直的充要条件有哪些?提示:abab=0x1x2+y1y2=0|a-b|=|a+b|.注意:数量积的运算ab=0ab中,是对非零向量而言的,若a=0,虽然有ab=0,但不能说ab.1.若非零

    11、向量a,b满足=,且(a-b)(3a+2b),则a与b的夹角为()A.B.C.D.【解析】选A.设a与b的夹角为,=,因为,所以=3-2-ab=|b|2-2|b|2-|b|2cos =0,解得cos =,因为,所以=.2.已知向量a,b是平面内两个互相垂直的单位向量,若(5a-2c)(12b-2c)=0,则|c|的最大值是_.【解析】因为ab=0,|a|=|b|=1,所以(5a-2c)(12b-2c)=60ab-10ac-24bc+4c2=0,即2|c|2=5ac+12bc=(5a+12b)c,当c与5a+12b共线时,|c|最大,所以4|c|2=(5a+12b)2=25|a|2+120ab+

    12、144|b|2=25+144=169,所以|c|max=.答案:3.(2020杭州模拟)向量a=(m,1),b=(1,-3),且ab,则m=_; |a+b|=_.【解析】因为abm-3=0m=3,所以a+b=(4,-2),所以|a+b|=2.答案:321.(2019天津高考)在四边形ABCD中,ADBC,AB=2,AD=5,A=30,点E在线段CB的延长线上,且AE=BE,则=_.【解析】如图,过点B作AE的平行线交AD于F,因为ADBC,所以四边形AEBF为平行四边形,因为AE=BE,故四边形AEBF为菱形.因为BAD=30,AB=2,所以AF=2,即=.因为=-=-,所以=(-)=- =2

    13、5-12-10=-1.答案:-1【一题多解】解答本题还可以用如下方法解决:建立如图所示的平面直角坐标系,则B(2,0),D.因为ADBC,BAD=30,所以ABE=30,因为AE=BE,所以BAE=30,所以直线BE的斜率为,其方程为y=(x-2),直线AE的斜率为-,其方程为y=-x.由得x=,y=-1,所以E(,-1).所以=(,-1)=-1.答案:-12.如图,菱形ABCD的边长为2,BAD=60,M为DC的中点,若N为菱形内任意一点(含边界),则的最大值为_.【解析】由平面向量的数量积的几何意义知,等于|与在方向上的投影之积,所以()max= =(+)=|2+|2+=9.答案:9关闭Word文档返回原板块

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:21版高考数学人教A版浙江专用大一轮复习核心考点·精准研析 5-3 平面向量的数量积及应用举例 WORD版含解析.doc
    链接地址:https://www.ketangku.com/wenku/file-305142.html
    相关资源 更多
  • 江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc
  • 江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc
  • 江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx
  • 湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc
  • 湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc
  • 湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc
  • 湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc
  • 江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc
  • 江西省重点高中2022学年高一数学上学期第三次月考试题.docx江西省重点高中2022学年高一数学上学期第三次月考试题.docx
  • 湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc
  • 江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc
  • 江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc
  • 湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc
  • 江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1