江苏省南通市启东市高三(上)期末数学试卷.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 南通市 启东市 期末 数学试卷
- 资源描述:
-
1、2022-2022学年江苏省南通市启东市高三(上)期末数学试卷一、填空题:本大题共14小题,每小题5分,共70分请把答案填写在答题卡相应位置1设集合A=x|1x2,B=x|0x4,则AB=_2某校春季高考对学生填报志愿情况进行调查,采用分层抽样的办法抽取样本,该校共有200名学生报名参加春季高考,现抽取了一个容量为50的样本,已知样本中女生比男生多4人,则该校参加春季高考的女生共有_名3如果复数z=(i为虚数单位)的实部与虚部互为相反数,那么|z|=_4函数f(x)=ln(xx2)的单调递减区间为_5如图是一个算法的流程图,则输出的k的值是_6若将甲、乙、丙三个球随机放入编号为1,2两个盒子中
2、,每个盒子的放球数量不限,则每个盒子中球数不小于其编号的概率是_7设等差数列an的前n项和为Sn,若S36,S520,则a6的最大值为_8若,(0,),cos()=,sin()=,则cos(+)的值等于_9设向量=(sin,cos),=(sin,cos)(nN+),则()=_10已知直线l:x2y+m=0上存在点M满足与两点A(2,0),B(2,0)连线的斜率kMA与kMB之积为1,则实数m的取值范围是_11某工广生产一种无盖冰激凌纸筒为圆柱形,现一客户定制该圆柱纸筒,并要求该圆柱纸筒的容积为27cm3,设该圆柱纸筒的底面半径为r,则工厂要求制作该圆柱纸筒的材料最省时,r的值为_cm12已知等
3、比数列an,首项a1=2,公比q=3,ap+ap+1+ak=2178(kp,p,kN+),则p+k=_13设函数f(x)=,若函数y=f(x)2x+b有两个零点,则参数b的取值范围是_14对任意实数x1,y,不等式p+恒成立,则实数p的最大值为_二、解答题:本大题共6小题,共计90分请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤15已知函数f(x)=2cos2x+sin2x(1)求函数f(x)的最小正周期;(2)在ABC中,若C为锐角,f(A+B)=0,AC=2,BC=3,求AB的长16如图,在正三棱柱ABCA1B1C1中,D是边BC上异于C的一点,ADC1D(1)求证:A
4、D平面BCC1B1;(2)如果点E是B1C1的中点,求证:平面A1EB平面ADC117在平面直角坐标系xOy中,已知椭圆C: +=1(ab0)的离心率为,且右准线方程为x=4(1)求椭圆的标准方程;(2)设P(x1,y1),M(x2,y2)(y2y1)是椭圆C上的两个动点,点M关于x轴的对称点为N,如果直线PM,PN与x轴交于(m,0)和(n,0),问mn是否为定值?若是,求出该定值;若不是,请说明理由18如图,某景区有一座高AD为1千米的山,山顶A处可供游客观赏日出坡角ACD=30,在山脚有一条长为10千米的小路BC,且BC与CD垂直,为方便游客,该景区拟在小路BC上找一点M,建造两条直线型
5、公路BM和MA,其中公路BM每千米的造价为30万元,公路MA每千米的造价为60万元(1)设AMC=,求出造价y关于的函数关系式;(2)当BM长为多少米时,才能使造价y最低?19已知a0,且a1,函数f(x)=ax1,g(x)=x2+xlna(1)若a1,证明函数h(x)=f(x)g(x)在区间(0,+)上是单调增函数;(2)求函数h(x)=f(x)g(x)在区间1,1上的最大值;(3)若函数F(x)的图象过原点,且F(x)=g(x),当ae时,函数F(x)过点A(1,m)的切线至少有2条,求实数m的值20已知等差数列an的公差为d,等比数列bn的公比为q,且数列bn的前n项和为Sn(1)若a1
6、=b1=d=2,S3a1006+5b22022,求整数q的值;(2)若Sn+12Sn=2,试问数列bn中是否存在一点bk,使得bk恰好可以表示为该数列中连续p(pN,p2)项的和?请说明理由?(3)若b1=ar,b2=asar,b3=at(其中tsr,且(sr)是(tr)的约数),证明数列bn中每一项都是数列an中的项选修4-1:几何证明选讲21如图所示,PA,PB分别切圆O于A,B,过AB与OP的交点M作弦CD,连结PC,求证:选修4-2:矩阵与变换22在平面直角坐标系xOy中,设点P(1,1)在矩阵对应的变换下得到点Q(3,7),求M1选修4-4:坐标系与参数方程23在极坐标系中,设直线l
7、过点,且直线l与曲线C:=asin(a0)有且只有一个公共点,求实数a的值选修4-5:不等式选讲24求函数的最大值25学校文娱队的每位队员唱歌、跳舞至少会一项,已知会唱歌的有2人,会跳舞的有5人,现从中选2人设为选出的人中即会唱歌又会跳舞的人数,且(1)求文娱队的队员人数;(2)求的分布列,并求其数学期望E()26已知有穷数列an共有m项(m3,mN*),对于每个i(i=1,2,3,m)均有ai1,2,3,且首项a1与末项am不相等,同时任意相邻两项不相等记符合上述条件的所有数列an的个数为f(m)(1)写出f(3),f(4)的值;(2)写出f(m)的表达式,并说明理由2022-2022学年江
8、苏省南通市启东市高三(上)期末数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分请把答案填写在答题卡相应位置1设集合A=x|1x2,B=x|0x4,则AB=x|0x2【考点】交集及其运算【分析】由A与B,求出两集合的交集即可【解答】解:A=x|1x2,B=x|0x4,AB=x|0x2,故答案为:x|0x22某校春季高考对学生填报志愿情况进行调查,采用分层抽样的办法抽取样本,该校共有200名学生报名参加春季高考,现抽取了一个容量为50的样本,已知样本中女生比男生多4人,则该校参加春季高考的女生共有108名【考点】分层抽样方法【分析】根据样本容量和女生比男生多4人,可得样
9、本中女生数,再根据抽取的比例可得总体中的女生人数【解答】解:样本容量为50,女生比男生多4人,样本中女生数为27人,又分层抽样的抽取比例为=,总体中女生数为274=108人故答案为:1083如果复数z=(i为虚数单位)的实部与虚部互为相反数,那么|z|=【考点】复数求模【分析】利用复数的运算法则及其实部与虚部互为相反数,解得a,再利用复数模的计算公式即可得出【解答】解:复数z=的实部与虚部互为相反数,+=0,解得a=0z=|z|=故答案为:4函数f(x)=ln(xx2)的单调递减区间为,1)【考点】复合函数的单调性【分析】令t=xx20,求得函数的定义域,f(x)=g(t)=lnt,本题即求函
10、数函数t在定义域内的减区间,再利用二次函数的性质可得结论【解答】解:令t=xx20,求得0x1,可得函数的定义域为(0,1),f(x)=g(t)=lnt本题即求函数t在定义域内的减区间,函数t在定义域内的减区间为,1),故答案为:,1)5如图是一个算法的流程图,则输出的k的值是4【考点】程序框图【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,循环可得结论【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:第一次循环,s=5,k=1,第二次循环,s=13,k=2,第三次循环,s=13,k=3,第四次循环,s=29,k=4,退出循环,输出k=4故答案为:46若
11、将甲、乙、丙三个球随机放入编号为1,2两个盒子中,每个盒子的放球数量不限,则每个盒子中球数不小于其编号的概率是【考点】古典概型及其概率计算公式【分析】将甲、乙、丙三个球随机放入编号为1,2两个盒子中,每个盒子的放球数量不限,先求出基本事件总数,每个盒子中球数不小于其编号的情况是1号盒中放1个,2号盒中放2个,求出有多少种放法,由此能求出每个盒子中球数不小于其编号的概率【解答】解:将甲、乙、丙三个球随机放入编号为1,2两个盒子中,每个盒子的放球数量不限,基本事件总数n=23=8,每个盒子中球数不小于其编号的情况是1号盒中放1个,2号盒中放2个,有=3种放法,每个盒子中球数不小于其编号的概率:p=
12、故答案为:7设等差数列an的前n项和为Sn,若S36,S520,则a6的最大值为10【考点】等差数列的前n项和【分析】由等差数列的前n项和公式得到,由此能求出a6的最大值【解答】解:等差数列an的前n项和为Sn,若S36,S520,a6=a1+5d=3(a1+d)+4(a1+2d)32+44=10,a6的最大值为10故答案为:108若,(0,),cos()=,sin()=,则cos(+)的值等于【考点】两角和与差的正弦函数【分析】根据题意可得 =,=,由此求得+的值,可得cos(+)的值【解答】解:,(0,),cos()=,sin()=,=,=,= 或+=0(舍去)cos(+)=,故答案为:9
13、设向量=(sin,cos),=(sin,cos)(nN+),则()=1【考点】平面向量数量积的运算【分析】化简=cos于是根据诱导公式可得+=+=+=+=0,所以()=+=cos+cos=1【解答】解: =sinsin+coscos=cos()=cos+=cos+cos=0,同理, +=0, +=0,+=0()=+=cos+cos=1故答案为110已知直线l:x2y+m=0上存在点M满足与两点A(2,0),B(2,0)连线的斜率kMA与kMB之积为1,则实数m的取值范围是2,2【考点】圆方程的综合应用【分析】设出M的坐标,由kMA与kMB之积为3得到M坐标的方程,和已知直线方程联立,化为关于x
14、的一元二次方程后由判别式大于等于0求得实数m的取值范围【解答】解:设M(x,y),由kMAkMB=3,得=1,即x2+y2=4联立,得5y24my+m24=0要使直线l:x2y+m=0上存在点M满足与两点A(2,0),B(2,0)连线的斜率kMA与kMB之积为1,则=(4m)220(m24)0,即m220解得m2,2实数m的取值范围是:2,2故答案为:2,211某工广生产一种无盖冰激凌纸筒为圆柱形,现一客户定制该圆柱纸筒,并要求该圆柱纸筒的容积为27cm3,设该圆柱纸筒的底面半径为r,则工厂要求制作该圆柱纸筒的材料最省时,r的值为3cm【考点】棱柱、棱锥、棱台的侧面积和表面积【分析】设底面半径
15、为r,高为h,则由题意得S=2rh+r2=,由此利用导数能求出制作该圆柱纸筒的材料最省时,r的值【解答】解:设底面半径为r,高为h,则由题意得h=,S=2rh+r2=,S=,当0r3时,S0,当r3时,S0,故r=3时,取得极小值,也是最小值,制作该圆柱纸筒的材料最省时,r的值为3故答案为:312已知等比数列an,首项a1=2,公比q=3,ap+ap+1+ak=2178(kp,p,kN+),则p+k=10【考点】数列的求和【分析】通过an=23n1可知ap+ap+1+ak=3p1(3kp+11),利用2178=32(351)比较即得结论【解答】解:依题意,an=23n1,则2178=ap+ap
16、+1+ak=3p1(3kp+11),又2178=9=32(351),即,p+k=10,故答案为:1013设函数f(x)=,若函数y=f(x)2x+b有两个零点,则参数b的取值范围是(,2(0,2ln21)【考点】根的存在性及根的个数判断【分析】由y=f(x)2x+b=0得f(x)=2xb,作出函数f(x)和y=2xb的图象,利用数形结合进行求解即可【解答】解:作出函数f(x)的图象如图:,由y=f(x)2x+b=0得f(x)=2xb,当g(x)=2xb经过点(0,2)时,满足两个函数有两个交点,此时b=2,即b=2,当b2,即b2时,满足条件,当g(x)=2xb与f(x)=ex1相切时,由f(
17、x)=ex=2得x=ln2,y=eln21=21=1,即切点坐标为(ln2,1),此时2ln2b=1,即b=2ln21,当直线g(x)=2xb经过原点时,b=0,要使两个函数有两个交点,则此时0b2ln21,综上0b2ln21或b2,故实数b的取值范围是(,2(0,2ln21),故答案为:(,2(0,2ln21)14对任意实数x1,y,不等式p+恒成立,则实数p的最大值为8【考点】函数恒成立问题【分析】根据不等式p+恒成立,转化为求+的最小值即可,利用换元法,结合基本不等式进行求解即可【解答】解:设a=2y1,b=x1,x1,y,a0,b0,且x=b+1,y=(a+1),则+=+2=2=2(+
18、)2(2+)=2(2+2)=8,当且仅当a=b=1,即x=2,y=1时,取等号p8,即p的最大值为8,故答案为:8二、解答题:本大题共6小题,共计90分请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤15已知函数f(x)=2cos2x+sin2x(1)求函数f(x)的最小正周期;(2)在ABC中,若C为锐角,f(A+B)=0,AC=2,BC=3,求AB的长【考点】余弦定理;三角函数的周期性及其求法【分析】(1)由三角函数恒等变换的应用化简函数解析式可得f(x)=2sin(2x+)+1,利用周期公式可求f(x)的最小正周期T(2)由已知可得sin(2A+2B+)=,由A,B是A
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
