河南省豫西名校2019_2020学年高二数学上学期第一次联考试题含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河南省 名校 2019 _2020 学年 数学 上学 第一次 联考 试题 解析
- 资源描述:
-
1、河南省豫西名校2019-2020学年高二数学上学期第一次联考试题(含解析)一、选择题(本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的)1.在中,角,所对的边分别为,若,则( )A. B. 2C. 3D. 【答案】A【解析】【分析】利用正弦定理,可直接求出的值.【详解】在中,由正弦定理得,所以,故选:A.【点睛】本题考查利用正弦定理求边,要记得正弦定理所适用的基本类型,考查计算能力,属于基础题。2.已知数列an为等差数列,Sn为其前n项和,2+a5a6+a3,则S7()A. 2B. 7C. 14D. 28【答案】C【解析】【分析】先计算,在利用公式求出【详
2、解】2+a5a6+a3 ,,选C.【点睛】本题考查等差中项,属于简单题。3.当太阳光与水平面的倾斜角为时,一根长为2 m的竹竿如图所示放置,要使它的影子最长,则竹竿与地面所成的角为A. B. C. D. 【答案】A【解析】【分析】设竹竿与地面所成的角为,影子长为x m由正弦定理,求得,即可得到答案【详解】设竹竿与地面所成的角为,影子长为x m由正弦定理,得,所以,因为,所以当,即时,x有最大值,故竹竿与地面所成的角为时,影子最长故选A【点睛】本题主要考查了三角形的实际应用问题,其中解答解三角形实际问题时需要根据正、余弦定理结合已知条件灵活转化边角之间的关系,合理使用正、余弦定理是解答的关键,着
3、重考查了分析问题和解答问题的能力,属于基础题4.在等比数列中,则( )A. B. C. 2D. 4【答案】B【解析】【分析】将 转化为关于 和q的算式,计算出q即可求出【详解】因为q4,所以q8+q420,所以q44或q45(舍),所以q22,1,所以故选:B【点睛】本题考查了等比数列的通项公式,考查等比数列的性质,要求熟练掌握等比数列的性质的应用,比较基础5.已知数列通项公式为,要使数列的前项和最大,则的值为A. 14B. 13或14C. 12或11D. 13或12【答案】D【解析】【分析】由题可得:数列是以为首项,公差的等差数列,即可求得,利用二次函数的性质即可得解。【详解】因为,所以数列
4、是以为首项,公差的等差数列,所以由二次函数的性质可得:当或时,最大故选:D【点睛】本题主要考查了等差数列的通项公式及等差数列的前项和公式,还考查了二次函数的性质及计算能力,属于中档题。6.在中,角A,B,C的对边分别为a,b,c,已知,则A. 1B. 2C. 3D. 4【答案】B【解析】【分析】利用正弦定理化简已知条件,求得,进而得到,由此求得正确选项.【详解】在中,角A,B,C的对边分别为a,b,c,已知,由正弦定理得,由正弦定理有,故故选B.【点睛】本小题主要考查利用正弦定理进行边角互化,考查两角和的正弦公式以及三角形内角和定义,属于基础题.7.数列中,则()A. 32B. 62C. 63
5、D. 64【答案】C【解析】【分析】把化成,故可得为等比数列,从而得到的值.【详解】数列中,故,因为,故,故,所以,所以为等比数列,公比为,首项为.所以即,故,故选C.【点睛】给定数列的递推关系,我们常需要对其做变形构建新数列(新数列的通项容易求得),常见的递推关系和变形方法如下:(1),取倒数变形为;(2),变形为,也可以变形为;8.设的内角所对的边分别为,且,已知的面积,则的值为( )A. B. C. D. 【答案】D【解析】【分析】利用正弦定理化简已知的等式得到,利用同角三角函数基本关系式可求的值,进而利用三角形面积公式即可得解的值【详解】,变形为:,又为三角形的内角,即,为三角形的内角
6、,可得:,解得:故选:D【点睛】此题考查了正弦定理,同角三角函数间的基本关系,以及三角形面积公式在解三角形中的应用,熟练掌握正弦定理是解本题的关键,属于基础题9.已知等差数列的公差不为零,为其前项和,且, 构成等比数列,则()A. 15B. -15C. 30D. 25【答案】D【解析】【分析】设等差数列的公差为,由已知列关于首项与公差的方程组,求解得到首项与公差,再由等差数列的前项和公式求解【详解】解:设等差数列公差为,由题意,解得 故选:D【点睛】本题考查等差数列的通项公式与前项和,考查等比数列的性质,是基础题10.在中,角的对边分别是,若,则的值为( )A. 1B. C. D. 【答案】C
7、【解析】【分析】在中利用正弦定理和二倍角公式能求出角,再依据余弦定理列出关于角的关系式,化简即得。【详解】,由正弦定理可得,即.由于,.,.又,由余弦定理可得,.故选C.【点睛】本题主要考查正余弦定理解三角形以及三角恒等变换。11.我国古代的洛书中记载着世界上最古老的一个幻方:如图,将1,2,9填入的方格内,使三行,三列和两条对角线上的三个数字之和都等于15.一般地,将连续的正整数填入个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做阶幻方.记阶幻方的对角线上的数字之和为,如图三阶幻方的,那么 的值为( )A. 41B. 45C. 369D. 321【答案】C【解析】【分析
8、】推导出,由此利用等差数列求和公式能求出结果【详解】根据题意可知,幻方对角线上的数成等差数列,故.故选:C【点睛】本题主要考查了等差数列的性质和等差数列的前项和公式,本题解题的关键是应用等差数列的性质来解题12.在中,已知角的对边分别为,若,且,则的最小角的余弦值为( )A. B. C. D. 【答案】D【解析】【分析】利用余弦定理求出和的表达式,由,结合正弦定理得出的表达式,利用余弦定理得出的表达式,可解出的值,于此确定三边长,再利用大边对大角定理得出为最小角,从而求出。【详解】,由正弦定理,即,解得,由大边对大角定理可知角是最小角,所以,故选:D。【点睛】本题考查正弦定理和余弦定理的应用,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
