江苏省姜堰市溱潼中学2012届高三数学基础知识梳理 第2章 函数.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省姜堰市溱潼中学2012届高三数学基础知识梳理 第2章 函数 江苏省 姜堰市 中学 2012 届高三 数学 基础知识 梳理
- 资源描述:
-
1、第二章 函数基础知识梳理一、函数: 1.函数的近代定义:如果A、B都是非空数集,那么A到B的映射f :AB就叫做A到B的函数,记作y=f (x),其中xA,yB.原象的集合A叫做函数y=f (x)的定义域,象集合C(CB)叫做函数y=f (x)的值域. 函数的三要素是: 、 、 . 函数的表示法:解析法、列表法、图象法. 关于区间的概念: 满足不等式axb的实数x的集合叫做闭区间,表示为 ; 满足不等式axb的实数x的集合叫做开区间,表示为 ; 满足不等式axb或axb的实数x的集合叫做半开半闭区间,分别表示为 或 . 以上的实数a与b都叫做相应区间的端点. 函数解析式的求法:换元法;待定系数
2、法. 求函数定义域的主要依据: 分式中的分母不为0;偶次根式的被开方数不小于零;对数的真数大于零; 零指数幂的底数不等于零;指数函数和对数函数的底数大于零且不等于1; 对于应用问题,要注意自变量所受实际意义的限制. 求函数值域的方法有:配方法;换元法;判别式法;单调性法; 基本不等式法;数形结合法;三、函数的单调性: 函数单调性的定义: 如果对于属于定义域I内某个区间上的任意两个自变量的值x1,x2,当x1x2时, 都有f (x1)f (x2),那么就说f (x)在这个区间上是增函数. 这个区间叫增区间. 如果对于属于定义域I内某个区间上的任意两个自变量的值x1,x2,当x1x2时, 都有f
3、(x1)f (x2), 那么就说f (x)在这个区间上是减函数. 这个区间叫减区间.注意:函数的单调区间(增区间或减区间)是其定义域的子集;函数的定义域不一定是函数的单调区间. 函数单调性的判别方法:图象法.若函数f (x)的图象在区间D上从左至右是上升(下降)的,则f (x)在区间D上是增(减)函数;定义法.其一般步骤是: 值.在所给区间上任取x1x2;作差f (x1)f (x2);变形.分解因式或配方等;定号.看 f (x1)f (x2)的符号;下结论. 利用函数单调性的判定定理:用定义可直接证出. 函数f (x)与f (x)+c(c为常数)具有相同的单调性; 当c0时,函数f (x)与c
4、f (x)具有相同的单调性;当c0时,函数f (x)与cf (x)具有相反的单调性; 若f (x)0,则函数f (x)与具有相反的单调性; 若f (x)0,则函数f (x)与具有相同的单调性; 若函数f (x), g(x)都是增函数,则f (x)+g(x)也是增函数; (增+增=增) 若函数f (x), g(x)都是减函数,则f (x)+g(x)也是减函数; (减+减=减) 若函数f (x)是增函数, g(x)是减函数,则f (x)g(x)也是增函数;(增减=增) 若函数f (x)是减函数, g(x)是增函数,则f (x)g(x)也是减函数;(减增=减) 另外还有以下几个重要结论:(用定义可直
5、接证出) 一些特殊函数的单调性: 一次函数y=kx+b,当k0时,在R上是 ;当k0时,在R上是 . 二次函数y=ax2+bx+c, 当a0时,在(,上为 ,在,+)上为 ; 当a0时,在(,上为 ,在,+)上为 . 反比例函数y=,当k0时,在(,0),(0,+)上都是 ; 当k0时,在(,0),(0,+)上都是 . 指数函数y=ax,当a1时,在R上是 , 当0a1时,在R上是 . 对数函数y=logax,当a1时,在(0,+)是 , 当0a1时,在(0,+)是 . *记住重要函数y=x+的单调性,并会证明:当x0时,函数在(0,)上单调递减,在,+上单调递增;当x0时,函数在 上单调递减
6、,在 上单调递增.四、函数的奇偶性: 函数奇偶性的定义: 如果对于函数f (x)的定义域内任意一个x,都有f (x)=f (x),那么函数f (x)叫做偶函数.如果对于函数f (x)的定义域内任意一个x,都有f (x)=f (x),那么函数f (x)叫做奇函数.注意:由定义可知,函数具有奇偶性的必要条件是定义域关于 对称. 函数的奇偶性可分为四类:奇函数、偶函数、既是奇函数又是偶函数(此时我们说该函数 具有奇偶性)、既不是奇函数又不是偶函数(此时我们说该函数不具有奇偶性). 注意:设函数f (x)的定义域关于原点对称,那么函数f (x) 既是奇函数又是偶函数的充要条件是f (x)恒等于0. 例
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
