《考前三个月》2015届高考数学(人教通用文科)练透高考必会题型:专题7 第31练.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考前三个月
- 资源描述:
-
1、第31练双曲线的渐近线和离心率内容精要双曲线作为比较重要的一种二次曲线类型,在高考中由于其特殊的形式和性质而频繁出现,题目形式多为选择题和填空题,题目难度并不大,要熟悉双曲线方程及其特有的性质渐近线,这是高考中考查的热点题型一双曲线的渐近线问题例1(2013课标全国)已知双曲线C:1(a0,b0)的离心率为,则C的渐近线方程为()Ayx ByxCyx Dyx破题切入点根据双曲线的离心率求出a和b的比例关系,进而求出渐近线答案C解析由e知,a2k,ck(kR),由b2c2a2k2,知bk.所以.即渐近线方程为yx.故选C.题型二双曲线的离心率问题例2已知O为坐标原点,双曲线1(a0,b0)的右焦
2、点为F,以OF为直径作圆与双曲线的渐近线交于异于原点的两点A,B,若()0,则双曲线的离心率e为()A2 B3 C. D.破题切入点数形结合,画出合适图形,找出a,b间的关系答案C解析如图,设OF的中点为T,由()0可知ATOF,又A在以OF为直径的圆上,A,又A在直线yx上,ab,e.题型三双曲线的渐近线与离心率综合问题例3已知A(1,2),B(1,2),动点P满足.若双曲线1(a0,b0)的渐近线与动点P的轨迹没有公共点,则双曲线离心率的取值范围是_破题切入点先由直接法确定点P的轨迹(为一个圆),再由渐近线与该轨迹无公共点得到不等关系,进一步列出关于离心率e的不等式进行求解答案(1,2)解
3、析设P(x,y),由题设条件,得动点P的轨迹为(x1)(x1)(y2)(y2)0,即x2(y2)21,它是以(0,2)为圆心,1为半径的圆又双曲线1(a0,b0)的渐近线方程为yx,即bxay0,由题意,可得1,即1,所以e1,故1e1的条件,常用到数形结合(2)在求双曲线的渐近线方程时要掌握其简易求法由yx00,所以可以把标准方程1(a0,b0)中的“1”用“0”替换即可得出渐近线方程双曲线的离心率是描述双曲线“张口”大小的一个数据,由于,当e逐渐增大时,的值就逐渐增大,双曲线的“张口”就逐渐增大1已知双曲线1(a0,b0)以及双曲线1的渐近线将第一象限三等分,则双曲线1的离心率为()A2或
4、 B.或C2或 D.或答案A解析由题意,可知双曲线1的渐近线的倾斜角为30或60,则或.则e 或2,故选A.2已知双曲线C:1 (a0,b0)的左,右焦点分别为F1,F2,过F2作双曲线C的一条渐近线的垂线,垂足为H,若F2H的中点M在双曲线C上,则双曲线C的离心率为()A. B. C2 D3答案A解析取双曲线的渐近线yx,则过F2与渐近线垂直的直线方程为y(xc),可解得点H的坐标为,则F2H的中点M的坐标为,代入双曲线方程1可得1,整理得c22a2,即可得e,故应选A.3已知双曲线1(a0,b0)的两条渐近线均和圆C:x2y26x50相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为(
5、)A.1 B.1C.1 D.1答案A解析双曲线1的渐近线方程为yx,圆C的标准方程为(x3)2y24,圆心为C(3,0)又渐近线方程与圆C相切,即直线bxay0与圆C相切,2,5b24a2.又1的右焦点F2(,0)为圆心C(3,0),a2b29.由得a25,b24.双曲线的标准方程为1.4已知双曲线1(a0,b0)的左,右焦点分别为F1(c,0),F2(c,0),若双曲线上存在点P使,则该双曲线的离心率的取值范围是()A(1,1) B(1,)C(,) D(1,)答案A解析根据正弦定理得,由,可得,即e,所以|PF1|e|PF2|.因为e1,所以|PF1|PF2|,点P在双曲线的右支上又|PF1
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-308518.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
