《考前三个月》2015届高考数学(江苏专用理科)必考题型过关练:第18练.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考前三个月
- 资源描述:
-
1、第18练存在与恒成立问题题型一不等式的恒成立问题例1已知函数f(x)ax1ln x,aR.(1)讨论函数f(x)的单调区间;(2)若函数f(x)在x1处取得极值,对x(0,),f(x)bx2恒成立,求实数b的取值范围破题切入点有关不等式的恒成立求参数范围的问题,通常采用的是将参数分离出来的方法解(1)在区间(0,)上,f(x)a,当a0时,f(x)0时,令f(x)0得x,在区间(0,)上,f(x)0,函数f(x)单调递增综上所述:当a0时,f(x)的单调递减区间是(0,),无单调递增区间;当a0时,f(x)的单调递减区间是(0,),单调递增区间是(,)(2)因为函数f(x)在x1处取得极值,所
2、以f(1)0,解得a1,经检验可知满足题意由已知f(x)bx2,即x1ln xbx2,即1b对x(0,)恒成立,令g(x)1,则g(x),易得g(x)在(0,e2上单调递减,在e2,)上单调递增,所以g(x)ming(e2)1,即b1.题型二存在性问题例2已知函数f(x)ax3bx2cx在x1处取得极值,且在x0处的切线的斜率为3.(1)求f(x)的解析式;(2)若过点A(2,m)可作曲线yf(x)的三条切线,求实数m的取值范围破题切入点(1)利用极值处导数为0及导数的几何意义求出f(x)(2)借助导数几何意义表示切线方程,然后分离参数,利用数形结合求m的范围解(1)f(x)3ax22bxc.
3、依题意又f(0)3,c3,a1,f(x)x33x.(2)设切点为(x0,x3x0),f(x)3x23.f(x0)3x3.切线方程为y(x3x0)(3x3)(xx0)又切线过点A(2,m)m(x3x0)(3x3)(2x0)m2x6x6.令g(x)2x36x26,则g(x)6x212x6x(x2),由g(x)0得x0或x2.g(x)极小值g(0)6,g(x)极大值g(2)2.画出草图如图当6m0,函数f(x)ln xax2,x0.(f(x)的图象连续不断)(1)求f(x)的单调区间;(2)当a时,证明:存在x0(2,),使f(x0)f;(3)若存在均属于区间1,3的,且1,使f()f(),证明:.
4、破题切入点考查导数的运算,利用导数研究函数的单调性,解不等式函数的零点等基础知识,既有存在,又有恒成立问题(1)解f(x)2ax,x(0,),令f(x)0,解得x,当x变化时,f(x),f(x)的变化情况如下表:xf(x)0f(x)极大值所以f(x)的单调递增区间是,f(x)的单调递减区间是.(2)证明当a时,f(x)ln xx2.由(1)知f(x)在(0,2)内单调递增,在(2,)内单调递减令g(x)f(x)f,由于f(x)在(0,2)内单调递增,故f(2)f,即g(2)0.取xe2,则g(x)2,且g(x)0即可)(3)证明由f()f()及(1)的结论知,从而f(x)在,上的最小值为f()
5、又由1,1,3,知123.故即从而a.总结提高(1)存在与恒成立两个热点词汇在高考中频繁出现,关键要把握两个词语的本质:存在即存在量词,“有的”意思;恒成立即全称量词,“任意的”意思(2)解决这类问题的关键是转化与化归思想,转化为求解函数的最大值与最小值问题(3)函数与方程思想的应用在求解参数范围中体现的淋漓尽致,将参数分离出来,另一侧设为函数,转化为求解另一侧函数的最大值和最小值问题1(2013课标全国改编)若存在正数x使2x(xa)1成立,则a的取值范围是_答案(1,)解析2x(xa)x.令f(x)x,f(x)12xln 20.f(x)在(0,)上单调递增,f(x)f(0)011,a的取值
6、范围为(1,)2已知函数f(x)2ax33ax21,g(x)x,若任意给定的x00,2,总存在两个不同的xi(i1,2)0,2,使得f(xi)g(x0)成立,则实数a的取值范围是_答案(,1)解析当a0时,显然不成立;当a0时,注意到f(x)6ax26ax6ax(x1),即f(x)在0,1上是减函数,在1,2上是增函数,又f(0)1g(0),当x00时,结论不可能成立;进一步,可知a0,此时g(x)在0,2上是增函数,且取值范围是,同时f(x)在0x1时,函数值从1增大到1a,在1x2时,函数值从1a减少到14a,所以“任意给定的x00,2,总存在两个不同的xi(i1,2)0,2,使得f(xi
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
