《解析》北京市平谷区2019-2020学年高二上学期期末考试数学试题 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 解析 解析北京市平谷区2019-2020学年高二上学期期末考试数学试题 WORD版含解析 北京市 平谷区 2019 2020 学年 高二上 学期 期末考试 数学试题 WORD
- 资源描述:
-
1、高考资源网() 您身边的高考专家平谷区20192020学年高二第一学期期末质量监控数学试卷第卷(选择题 共40分)一、选择题:(本大题共8小题,每小题5分,共40分;在每个小题列出的四个选项中,只有一项是符合要求的.)1.命题“”的否定是( )A. B. C. D. 【答案】A【解析】【分析】直接根据全称命题的否定为特称命题来改写即可.【详解】解:命题“”的否定是“”.故选:A.【点睛】本题考查全称命题的否定,是基础题.2.双曲线的渐近线方程为()A. B. C. D. 【答案】B【解析】【分析】把双曲线的标准方程中的1换成0,可得其渐近线的方程【详解】双曲线的渐近线方程是 ,即 ,故选B【点
2、睛】本题考查了双曲线的标准方程与简单的几何性质等知识,属于基础题3.已知抛物线C:,那么抛物线C的准线方程为( )A. B. C. D. 【答案】C【解析】【分析】根据抛物线C:的准线方程为来写出其准线方程.【详解】解:由已知可得,得,所以抛物线的准线方程为.故选:C.【点睛】本题考查抛物线的准线方程求解,是基础题.4.“”是“曲线方程表示焦点在轴上的椭圆”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B【解析】【分析】曲线方程表示焦点在轴上的椭圆,不仅要看的大小,还要看的正负.【详解】解:当时,若中有一个是负数,则曲线方程就不是椭圆,
3、故不满足充分性;曲线方程表示焦点在轴上椭圆,则,故满足必要性.故选:B.【点睛】本题考查椭圆焦点位置和椭圆标准方程中的系数的关系,是基础题.5.在我国建国70周年大庆之际,某校高二年级团支部组织6名学生去慰问平谷区老一代革命军人.现有10名学生报名,那么其中甲、乙两名学生被选参加慰问活动的概率是( )A. B. C. D. 【答案】C【解析】【分析】先求出10名学生报名,选出6名学生的基本事件的个数,然后求出甲、乙两名学生被选的基本事件的个数,再利用古典概型的公式求解即可.【详解】解:10名学生报名,选出6名学生的基本事件的个数为,甲、乙两名学生被选的基本事件的个数为,那么其中甲、乙两名学生被
4、选参加慰问活动的概率是.故选:C【点睛】本题考查古典概型的求解以及利用排列组合知识解决基本事件的个数问题,是基础题.6.在对某校高中学生身高的调查中,小明、小华分别独立进行了简单随机抽样调查.小明调查的样本平均数为165.7,样本量为100;小华调查的样本平均数为166.5,样本量为200.下列说法正确的是( )A. 小华的调查结果比小明的调查结果更接近总体平均数的估计B. 总体平均数一定高于小明调查的样本平均数C. 总体平均数一定低于小华调查的样本平均数D. 总体平均数是确定的数,样本平均数总是在总体平均数附近波动【答案】D【解析】【分析】总体平均数是确定的数,在样本容量小于总体容量时,无法
5、估计样本平均数与总体平均数之间的大小关系.【详解】解:总体平均数是确定的数,在样本容量小于总体容量时,无法估计样本平均数与总体平均数之间的大小关系,故ABC均错误. 总体平均数是确定的数,样本平均数总是在总体平均数附近波动,故D正确.故选:D.【点睛】本题考查样本平均数与总体平均数之间的关系,是基础题.7.如图,棱锥中,平面,是中点,下列结论错误的是( )A. 平面平面B. C. D. 二面角的平面角为【答案】D【解析】【分析】根据线面垂直的判定和性质逐一判断即可.【详解】解:对A:因为平面,又面,可得平面平面,故正确;对B:因为故是等腰三角形,又是中点,所以,故正确;对C:因为,可得面,所以
6、,故正确;对D:因为,所以二面角的平面角为,故错误.故选:D.【点睛】本题考查线面垂直的判定和性质,以及二面角的平面角的概念,是基础题.8.如果把一个平面区域内两点间的距离的最大值称为此区域的直径,那么曲线围成的平面区域的直径为( )A. B. C. 8D. 【答案】C【解析】【分析】化简曲线方程,在平面直角坐标系中画出图形,利用新定义判断求解即可.【详解】解:曲线,等价于,如图:由图形可知,上下两个顶点之间的距离最大:8,那么曲线围成的平面区域的直径为:8.故选:C.【点睛】本题考查函数与方程的应用,曲线的图形的画法,考查数形结合以及计算能力.第卷(非选择题共110分)二、填空题(本大题共6
7、小题,每小题5分,共30分请把答案填在答题卡中相应题中横线上)9.的展开式的第4项的系数是_;【答案】【解析】【分析】直接利用二项式定理展开式,求出二项式的展开式中的第4项的系数.【详解】解:二项式的展开式中的第4项的系数为.故答案为:.【点睛】本题考查二项式定理系数的性质,考查计算能力.10.已知命题使得,那么此命题是_命题(填“真”或“假”);【答案】假【解析】分析】直接利用判别式研究命题的真假即可.【详解】解:对于,因为,所以不存在,使,故原命题为假命题.故答案为:假.【点睛】本题考查命题的真假判断与应用,是基础题.11.从3名男生和4名女生中选出2人分别担任2项不同的社区活动服务者,要
8、求男、女生各1人,那么不同的安排有_种(用数字做答);【答案】24【解析】【分析】先选一名男生,有3种方法;再选一名女生,有4种方法,根据分步计数原理求得结果【详解】解:先选一名男生,有3种方法;再选一名女生,有4种方法,根据分步计数原理求得选取男、女生各1名,不同的安排方案种数为43224,故答案为:24【点睛】本题主要考查分步计数原理的应用,属于基础题12.已知抛物线 上一点的距离到焦点的距离为5,则这点的坐标为_【答案】【解析】由抛物线定义得 ,即这点的坐标为13.某市准备引进优秀企业进行城市建设. 城市分别对甲地、乙地5个企业(共10个企业)进行综合评估,得分情况如茎叶图所示.根据茎叶
9、图,可知甲地、乙地企业评估得分的平均值分别是_、_;试比较甲地、乙地企业得分方差大小_. 【答案】 (1). 88 (2). 88 (3). 甲乙.【解析】【分析】用公式计算甲、乙两地企业评估得分的平均值与方差,然后比较大小即可【详解】解:设甲、乙两地企业评估得分的平均值分别为,方差分别为,则,故,故答案为:88,88,甲乙【点睛】本题考查平均数与方差的计算,茎叶图,是基础题.14.某次高二英语听力考试中有5道选择题,每题1分,每道题在A,B,C三个选项中只有一个是正确的.下表是甲、乙、丙三名同学每道题填涂的答案和这5道题的得分:12345得分甲CCBBA 4乙CAABC3丙ACCBC2则甲同
10、学答错的题目的题号是_ ;此题正确的选项是_ .【答案】 (1). 3 (2). A【解析】【分析】根据图表,分析相同的选项,即可求得甲同学答错的题号以及正确答案【详解】解:由甲得4分,则正确4个,乙得3分,正确答案为3个,若甲第1题答错,则其他均答对,会导致乙235题错,这样乙就没有3分,故不可能;若甲第2题答错,则其他均答对,会导致丙1235题错,这样丙就没有2分,故不可能;若甲第3题答错,则其他均答对,会导致乙25题错,3题对,丙135题错,故符合题意;若甲第4题答错,则其他均答对,会导致丙1234题错,这样丙就没有2分,故不可能;若甲第5题答错,则其他均答对,会导致乙12题错,5题对,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-310513.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
